Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprleubrd Structured version   Visualization version   GIF version

Theorem suprleubrd 44162
Description: Natural deduction form of specialized suprleub 12156. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprleubrd.1 (𝜑𝐴 ⊆ ℝ)
suprleubrd.2 (𝜑𝐴 ≠ ∅)
suprleubrd.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
suprleubrd.4 (𝜑𝐵 ∈ ℝ)
suprleubrd.5 (𝜑 → ∀𝑧𝐴 𝑧𝐵)
Assertion
Ref Expression
suprleubrd (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprleubrd
StepHypRef Expression
1 suprleubrd.5 . 2 (𝜑 → ∀𝑧𝐴 𝑧𝐵)
2 suprleubrd.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
3 suprleubrd.2 . . . . . 6 (𝜑𝐴 ≠ ∅)
4 suprleubrd.3 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
5 suprleubrd.4 . . . . . 6 (𝜑𝐵 ∈ ℝ)
6 suprleub 12156 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
72, 3, 4, 5, 6syl31anc 1375 . . . . 5 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
87bicomd 223 . . . 4 (𝜑 → (∀𝑧𝐴 𝑧𝐵 ↔ sup(𝐴, ℝ, < ) ≤ 𝐵))
98biimpd 229 . . 3 (𝜑 → (∀𝑧𝐴 𝑧𝐵 → sup(𝐴, ℝ, < ) ≤ 𝐵))
109imp 406 . 2 ((𝜑 ∧ ∀𝑧𝐴 𝑧𝐵) → sup(𝐴, ℝ, < ) ≤ 𝐵)
111, 10mpdan 687 1 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  supcsup 9398  cr 11074   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  imo72b2lem2  44163
  Copyright terms: Public domain W3C validator