MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprubd Structured version   Visualization version   GIF version

Theorem suprubd 12209
Description: Natural deduction form of suprubd 12209. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprubd.1 (𝜑𝐴 ⊆ ℝ)
suprubd.2 (𝜑𝐴 ≠ ∅)
suprubd.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
suprubd.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
suprubd (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem suprubd
StepHypRef Expression
1 suprubd.1 . 2 (𝜑𝐴 ⊆ ℝ)
2 suprubd.2 . 2 (𝜑𝐴 ≠ ∅)
3 suprubd.3 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4 suprubd.4 . 2 (𝜑𝐵𝐴)
5 suprub 12208 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
61, 2, 3, 4, 5syl31anc 1375 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  supcsup 9457  cr 11133   < clt 11274  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  supiccub  13524  flval3  13837  fseqsupubi  14001  mertenslem2  15906  ruclem12  16264  pgpssslw  19600  icccmplem2  24768  icccmplem3  24769  reconnlem2  24772  ivthlem2  25410  ivthlem3  25411  mbflimsup  25624  itg2mono  25711  itg2cnlem1  25719  c1liplem1  25958  plyeq0lem  26172  imo72b2lem0  44156  suprubrnmpt2  45243  suprubrnmpt  45244
  Copyright terms: Public domain W3C validator