MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprubd Structured version   Visualization version   GIF version

Theorem suprubd 12231
Description: Natural deduction form of suprubd 12231. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprubd.1 (𝜑𝐴 ⊆ ℝ)
suprubd.2 (𝜑𝐴 ≠ ∅)
suprubd.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
suprubd.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
suprubd (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem suprubd
StepHypRef Expression
1 suprubd.1 . 2 (𝜑𝐴 ⊆ ℝ)
2 suprubd.2 . 2 (𝜑𝐴 ≠ ∅)
3 suprubd.3 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4 suprubd.4 . 2 (𝜑𝐵𝐴)
5 suprub 12230 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
61, 2, 3, 4, 5syl31anc 1374 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2939  wral 3060  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  supcsup 9481  cr 11155   < clt 11296  cle 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496
This theorem is referenced by:  supiccub  13543  flval3  13856  fseqsupubi  14020  mertenslem2  15922  ruclem12  16278  pgpssslw  19633  icccmplem2  24846  icccmplem3  24847  reconnlem2  24850  ivthlem2  25488  ivthlem3  25489  mbflimsup  25702  itg2mono  25789  itg2cnlem1  25797  c1liplem1  26036  plyeq0lem  26250  imo72b2lem0  44183  suprubrnmpt2  45264  suprubrnmpt  45265
  Copyright terms: Public domain W3C validator