Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimioo Structured version   Visualization version   GIF version

Theorem smfpimioo 43416
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimioo.s (𝜑𝑆 ∈ SAlg)
smfpimioo.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimioo.d 𝐷 = dom 𝐹
smfpimioo.a (𝜑𝐴 ∈ ℝ*)
smfpimioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
smfpimioo (𝜑 → (𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆t 𝐷))

Proof of Theorem smfpimioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimioo.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
2 smfpimioo.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpimioo.d . . . . . . 7 𝐷 = dom 𝐹
41, 2, 3smff 43363 . . . . . 6 (𝜑𝐹:𝐷⟶ℝ)
54feqmptd 6712 . . . . 5 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
65cnveqd 5714 . . . 4 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
76imaeq1d 5899 . . 3 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) = ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)))
8 eqid 2801 . . . . 5 (𝑥𝐷 ↦ (𝐹𝑥)) = (𝑥𝐷 ↦ (𝐹𝑥))
98mptpreima 6063 . . . 4 ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)}
109a1i 11 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)})
117, 10eqtrd 2836 . 2 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)})
12 nfv 1915 . . 3 𝑥𝜑
131uniexd 7452 . . . 4 (𝜑 𝑆 ∈ V)
141, 2, 3smfdmss 43364 . . . 4 (𝜑𝐷 𝑆)
1513, 14ssexd 5195 . . 3 (𝜑𝐷 ∈ V)
164ffvelrnda 6832 . . 3 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
175, 2eqeltrrd 2894 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
18 smfpimioo.a . . 3 (𝜑𝐴 ∈ ℝ*)
19 smfpimioo.b . . 3 (𝜑𝐵 ∈ ℝ*)
2012, 1, 15, 16, 17, 18, 19smfpimioompt 43415 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)} ∈ (𝑆t 𝐷))
2111, 20eqeltrd 2893 1 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  {crab 3113  Vcvv 3444   cuni 4803  cmpt 5113  ccnv 5522  dom cdm 5523  cima 5526  cfv 6328  (class class class)co 7139  cr 10529  *cxr 10667  (,)cioo 12730  t crest 16690  SAlgcsalg 42947  SMblFncsmblfn 43331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ico 12736  df-fl 13161  df-rest 16692  df-salg 42948  df-smblfn 43332
This theorem is referenced by:  smfres  43419  smfpimbor1lem1  43427
  Copyright terms: Public domain W3C validator