Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimioo Structured version   Visualization version   GIF version

Theorem smfpimioo 43947
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimioo.s (𝜑𝑆 ∈ SAlg)
smfpimioo.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimioo.d 𝐷 = dom 𝐹
smfpimioo.a (𝜑𝐴 ∈ ℝ*)
smfpimioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
smfpimioo (𝜑 → (𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆t 𝐷))

Proof of Theorem smfpimioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimioo.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
2 smfpimioo.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpimioo.d . . . . . . 7 𝐷 = dom 𝐹
41, 2, 3smff 43894 . . . . . 6 (𝜑𝐹:𝐷⟶ℝ)
54feqmptd 6769 . . . . 5 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
65cnveqd 5733 . . . 4 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
76imaeq1d 5917 . . 3 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) = ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)))
8 eqid 2734 . . . . 5 (𝑥𝐷 ↦ (𝐹𝑥)) = (𝑥𝐷 ↦ (𝐹𝑥))
98mptpreima 6090 . . . 4 ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)}
109a1i 11 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)})
117, 10eqtrd 2774 . 2 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)})
12 nfv 1922 . . 3 𝑥𝜑
131uniexd 7519 . . . 4 (𝜑 𝑆 ∈ V)
141, 2, 3smfdmss 43895 . . . 4 (𝜑𝐷 𝑆)
1513, 14ssexd 5206 . . 3 (𝜑𝐷 ∈ V)
164ffvelrnda 6893 . . 3 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
175, 2eqeltrrd 2835 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
18 smfpimioo.a . . 3 (𝜑𝐴 ∈ ℝ*)
19 smfpimioo.b . . 3 (𝜑𝐵 ∈ ℝ*)
2012, 1, 15, 16, 17, 18, 19smfpimioompt 43946 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)} ∈ (𝑆t 𝐷))
2111, 20eqeltrd 2834 1 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {crab 3058  Vcvv 3401   cuni 4809  cmpt 5124  ccnv 5539  dom cdm 5540  cima 5543  cfv 6369  (class class class)co 7202  cr 10711  *cxr 10849  (,)cioo 12918  t crest 16897  SAlgcsalg 43478  SMblFncsmblfn 43862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cc 10032  ax-ac2 10060  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-card 9538  df-acn 9541  df-ac 9713  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-ioo 12922  df-ico 12924  df-fl 13350  df-rest 16899  df-salg 43479  df-smblfn 43863
This theorem is referenced by:  smfres  43950  smfpimbor1lem1  43958
  Copyright terms: Public domain W3C validator