![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioo | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimioo.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimioo.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpimioo.d | ⊢ 𝐷 = dom 𝐹 |
smfpimioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
smfpimioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimioo | ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioo.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | smfpimioo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
3 | smfpimioo.d | . . . . . . 7 ⊢ 𝐷 = dom 𝐹 | |
4 | 1, 2, 3 | smff 45434 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
5 | 4 | feqmptd 6957 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
6 | 5 | cnveqd 5873 | . . . 4 ⊢ (𝜑 → ◡𝐹 = ◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
7 | 6 | imaeq1d 6056 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) = (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) “ (𝐴(,)𝐵))) |
8 | eqid 2732 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) | |
9 | 8 | mptpreima 6234 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) “ (𝐴(,)𝐵)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)} |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) “ (𝐴(,)𝐵)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)}) |
11 | 7, 10 | eqtrd 2772 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)}) |
12 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
13 | 1 | uniexd 7728 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
14 | 1, 2, 3 | smfdmss 45435 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
15 | 13, 14 | ssexd 5323 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
16 | 4 | ffvelcdmda 7083 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
17 | 5, 2 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) ∈ (SMblFn‘𝑆)) |
18 | smfpimioo.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
19 | smfpimioo.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
20 | 12, 1, 15, 16, 17, 18, 19 | smfpimioompt 45488 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)} ∈ (𝑆 ↾t 𝐷)) |
21 | 11, 20 | eqeltrd 2833 | 1 ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ∪ cuni 4907 ↦ cmpt 5230 ◡ccnv 5674 dom cdm 5675 “ cima 5678 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 ℝ*cxr 11243 (,)cioo 13320 ↾t crest 17362 SAlgcsalg 45010 SMblFncsmblfn 45397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-ioo 13324 df-ico 13326 df-fl 13753 df-rest 17364 df-salg 45011 df-smblfn 45398 |
This theorem is referenced by: smfres 45492 smfpimbor1lem1 45500 |
Copyright terms: Public domain | W3C validator |