| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioo | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfpimioo.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimioo.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimioo.d | ⊢ 𝐷 = dom 𝐹 |
| smfpimioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| smfpimioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimioo | ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfpimioo.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | smfpimioo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 3 | smfpimioo.d | . . . . . . 7 ⊢ 𝐷 = dom 𝐹 | |
| 4 | 1, 2, 3 | smff 46854 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 5 | 4 | feqmptd 6896 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 6 | 5 | cnveqd 5819 | . . . 4 ⊢ (𝜑 → ◡𝐹 = ◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 7 | 6 | imaeq1d 6012 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) = (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) “ (𝐴(,)𝐵))) |
| 8 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) | |
| 9 | 8 | mptpreima 6190 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) “ (𝐴(,)𝐵)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)} |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) “ (𝐴(,)𝐵)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)}) |
| 11 | 7, 10 | eqtrd 2768 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)}) |
| 12 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 1 | uniexd 7681 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
| 14 | 1, 2, 3 | smfdmss 46855 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 15 | 13, 14 | ssexd 5264 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 16 | 4 | ffvelcdmda 7023 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
| 17 | 5, 2 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) ∈ (SMblFn‘𝑆)) |
| 18 | smfpimioo.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 19 | smfpimioo.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 20 | 12, 1, 15, 16, 17, 18, 19 | smfpimioompt 46908 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ (𝐴(,)𝐵)} ∈ (𝑆 ↾t 𝐷)) |
| 21 | 11, 20 | eqeltrd 2833 | 1 ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∪ cuni 4858 ↦ cmpt 5174 ◡ccnv 5618 dom cdm 5619 “ cima 5622 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 ℝ*cxr 11152 (,)cioo 13247 ↾t crest 17326 SAlgcsalg 46430 SMblFncsmblfn 46817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-ioo 13251 df-ico 13253 df-fl 13698 df-rest 17328 df-salg 46431 df-smblfn 46818 |
| This theorem is referenced by: smfres 46912 smfpimbor1lem1 46920 |
| Copyright terms: Public domain | W3C validator |