MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsplit1r Structured version   Visualization version   GIF version

Theorem gsumsplit1r 18613
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b 𝐵 = (Base‘𝐺)
gsumsplit1r.p + = (+g𝐺)
gsumsplit1r.g (𝜑𝐺𝑉)
gsumsplit1r.m (𝜑𝑀 ∈ ℤ)
gsumsplit1r.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumsplit1r.f (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
Assertion
Ref Expression
gsumsplit1r (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))

Proof of Theorem gsumsplit1r
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit1r.p . . 3 + = (+g𝐺)
3 gsumsplit1r.g . . 3 (𝜑𝐺𝑉)
4 gsumsplit1r.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 12890 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 gsumsplit1r.f . . 3 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
81, 2, 3, 6, 7gsumval2 18612 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)))
9 seqp1 13986 . . 3 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
104, 9syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
11 fzssp1 13549 . . . . . . 7 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
1211a1i 11 . . . . . 6 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
137, 12fssresd 6759 . . . . 5 (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵)
141, 2, 3, 4, 13gsumval2 18612 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁))
15 gsumsplit1r.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1615uzidd 12843 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
17 seq1 13984 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
1815, 17syl 17 . . . . . 6 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
19 eluzfz1 13513 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
204, 19syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
2120fvresd 6912 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹𝑀))
2218, 21eqtrd 2771 . . . . 5 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹𝑀))
23 fzp1ss 13557 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2415, 23syl 17 . . . . . . 7 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2524sselda 3983 . . . . . 6 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
2625fvresd 6912 . . . . 5 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) = (𝐹𝑥))
2716, 22, 4, 26seqfveq2 13995 . . . 4 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
2814, 27eqtr2d 2772 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))))
2928oveq1d 7427 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
308, 10, 293eqtrd 2775 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wss 3949  cres 5679  wf 6540  cfv 6544  (class class class)co 7412  1c1 11114   + caddc 11116  cz 12563  cuz 12827  ...cfz 13489  seqcseq 13971  Basecbs 17149  +gcplusg 17202   Σg cgsu 17391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-seq 13972  df-0g 17392  df-gsum 17393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator