| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumsplit1r | Structured version Visualization version GIF version | ||
| Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| gsumsplit1r.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsplit1r.p | ⊢ + = (+g‘𝐺) |
| gsumsplit1r.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumsplit1r.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumsplit1r.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| gsumsplit1r.f | ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumsplit1r | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit1r.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumsplit1r.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumsplit1r.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | gsumsplit1r.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 5 | peano2uz 12867 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| 7 | gsumsplit1r.f | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) | |
| 8 | 1, 2, 3, 6, 7 | gsumval2 18620 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))) |
| 9 | seqp1 13988 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
| 10 | 4, 9 | syl 17 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| 11 | fzssp1 13535 | . . . . . . 7 ⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) |
| 13 | 7, 12 | fssresd 6730 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵) |
| 14 | 1, 2, 3, 4, 13 | gsumval2 18620 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁)) |
| 15 | gsumsplit1r.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 16 | 15 | uzidd 12816 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 17 | seq1 13986 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) | |
| 18 | 15, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) |
| 19 | eluzfz1 13499 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 20 | 4, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 21 | 20 | fvresd 6881 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹‘𝑀)) |
| 22 | 18, 21 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹‘𝑀)) |
| 23 | fzp1ss 13543 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | |
| 24 | 15, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 25 | 24 | sselda 3949 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 26 | 25 | fvresd 6881 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) = (𝐹‘𝑥)) |
| 27 | 16, 22, 4, 26 | seqfveq2 13996 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 28 | 14, 27 | eqtr2d 2766 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁)))) |
| 29 | 28 | oveq1d 7405 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
| 30 | 8, 10, 29 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 seqcseq 13973 Basecbs 17186 +gcplusg 17227 Σg cgsu 17410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 df-0g 17411 df-gsum 17412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |