MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsplit1r Structured version   Visualization version   GIF version

Theorem gsumsplit1r 17900
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b 𝐵 = (Base‘𝐺)
gsumsplit1r.p + = (+g𝐺)
gsumsplit1r.g (𝜑𝐺𝑉)
gsumsplit1r.m (𝜑𝑀 ∈ ℤ)
gsumsplit1r.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumsplit1r.f (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
Assertion
Ref Expression
gsumsplit1r (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))

Proof of Theorem gsumsplit1r
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit1r.p . . 3 + = (+g𝐺)
3 gsumsplit1r.g . . 3 (𝜑𝐺𝑉)
4 gsumsplit1r.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 12301 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 gsumsplit1r.f . . 3 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
81, 2, 3, 6, 7gsumval2 17899 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)))
9 seqp1 13391 . . 3 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
104, 9syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
11 fzssp1 12957 . . . . . . 7 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
1211a1i 11 . . . . . 6 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
137, 12fssresd 6536 . . . . 5 (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵)
141, 2, 3, 4, 13gsumval2 17899 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁))
15 gsumsplit1r.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1615uzidd 12259 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
17 seq1 13389 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
1815, 17syl 17 . . . . . 6 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
19 eluzfz1 12921 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
204, 19syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
2120fvresd 6682 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹𝑀))
2218, 21eqtrd 2859 . . . . 5 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹𝑀))
23 fzp1ss 12965 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2415, 23syl 17 . . . . . . 7 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2524sselda 3954 . . . . . 6 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
2625fvresd 6682 . . . . 5 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) = (𝐹𝑥))
2716, 22, 4, 26seqfveq2 13400 . . . 4 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
2814, 27eqtr2d 2860 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))))
2928oveq1d 7165 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
308, 10, 293eqtrd 2863 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wss 3920  cres 5545  wf 6340  cfv 6344  (class class class)co 7150  1c1 10537   + caddc 10539  cz 11981  cuz 12243  ...cfz 12897  seqcseq 13376  Basecbs 16486  +gcplusg 16568   Σg cgsu 16717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11898  df-z 11982  df-uz 12244  df-fz 12898  df-seq 13377  df-0g 16718  df-gsum 16719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator