MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsplit1r Structured version   Visualization version   GIF version

Theorem gsumsplit1r 18286
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b 𝐵 = (Base‘𝐺)
gsumsplit1r.p + = (+g𝐺)
gsumsplit1r.g (𝜑𝐺𝑉)
gsumsplit1r.m (𝜑𝑀 ∈ ℤ)
gsumsplit1r.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumsplit1r.f (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
Assertion
Ref Expression
gsumsplit1r (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))

Proof of Theorem gsumsplit1r
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit1r.p . . 3 + = (+g𝐺)
3 gsumsplit1r.g . . 3 (𝜑𝐺𝑉)
4 gsumsplit1r.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 12570 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 gsumsplit1r.f . . 3 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
81, 2, 3, 6, 7gsumval2 18285 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)))
9 seqp1 13664 . . 3 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
104, 9syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
11 fzssp1 13228 . . . . . . 7 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
1211a1i 11 . . . . . 6 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
137, 12fssresd 6625 . . . . 5 (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵)
141, 2, 3, 4, 13gsumval2 18285 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁))
15 gsumsplit1r.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1615uzidd 12527 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
17 seq1 13662 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
1815, 17syl 17 . . . . . 6 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
19 eluzfz1 13192 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
204, 19syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
2120fvresd 6776 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹𝑀))
2218, 21eqtrd 2778 . . . . 5 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹𝑀))
23 fzp1ss 13236 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2415, 23syl 17 . . . . . . 7 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2524sselda 3917 . . . . . 6 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
2625fvresd 6776 . . . . 5 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) = (𝐹𝑥))
2716, 22, 4, 26seqfveq2 13673 . . . 4 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
2814, 27eqtr2d 2779 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))))
2928oveq1d 7270 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
308, 10, 293eqtrd 2782 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-gsum 17070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator