Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsplit1r | Structured version Visualization version GIF version |
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
gsumsplit1r.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsplit1r.p | ⊢ + = (+g‘𝐺) |
gsumsplit1r.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumsplit1r.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumsplit1r.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
gsumsplit1r.f | ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) |
Ref | Expression |
---|---|
gsumsplit1r | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit1r.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsplit1r.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumsplit1r.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | gsumsplit1r.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | peano2uz 12570 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
7 | gsumsplit1r.f | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) | |
8 | 1, 2, 3, 6, 7 | gsumval2 18285 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))) |
9 | seqp1 13664 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
11 | fzssp1 13228 | . . . . . . 7 ⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) |
13 | 7, 12 | fssresd 6625 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵) |
14 | 1, 2, 3, 4, 13 | gsumval2 18285 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁)) |
15 | gsumsplit1r.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
16 | 15 | uzidd 12527 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
17 | seq1 13662 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) | |
18 | 15, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) |
19 | eluzfz1 13192 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
20 | 4, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
21 | 20 | fvresd 6776 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹‘𝑀)) |
22 | 18, 21 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹‘𝑀)) |
23 | fzp1ss 13236 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | |
24 | 15, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
25 | 24 | sselda 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
26 | 25 | fvresd 6776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) = (𝐹‘𝑥)) |
27 | 16, 22, 4, 26 | seqfveq2 13673 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
28 | 14, 27 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁)))) |
29 | 28 | oveq1d 7270 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
30 | 8, 10, 29 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 df-0g 17069 df-gsum 17070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |