![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsplit1r | Structured version Visualization version GIF version |
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
gsumsplit1r.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsplit1r.p | ⊢ + = (+g‘𝐺) |
gsumsplit1r.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumsplit1r.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumsplit1r.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
gsumsplit1r.f | ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) |
Ref | Expression |
---|---|
gsumsplit1r | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit1r.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsplit1r.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumsplit1r.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | gsumsplit1r.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | peano2uz 12918 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
7 | gsumsplit1r.f | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) | |
8 | 1, 2, 3, 6, 7 | gsumval2 18649 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))) |
9 | seqp1 14017 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
11 | fzssp1 13579 | . . . . . . 7 ⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) |
13 | 7, 12 | fssresd 6764 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵) |
14 | 1, 2, 3, 4, 13 | gsumval2 18649 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁)) |
15 | gsumsplit1r.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
16 | 15 | uzidd 12871 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
17 | seq1 14015 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) | |
18 | 15, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) |
19 | eluzfz1 13543 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
20 | 4, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
21 | 20 | fvresd 6916 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹‘𝑀)) |
22 | 18, 21 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹‘𝑀)) |
23 | fzp1ss 13587 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | |
24 | 15, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
25 | 24 | sselda 3976 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
26 | 25 | fvresd 6916 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) = (𝐹‘𝑥)) |
27 | 16, 22, 4, 26 | seqfveq2 14025 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
28 | 14, 27 | eqtr2d 2766 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁)))) |
29 | 28 | oveq1d 7434 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
30 | 8, 10, 29 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ↾ cres 5680 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 1c1 11141 + caddc 11143 ℤcz 12591 ℤ≥cuz 12855 ...cfz 13519 seqcseq 14002 Basecbs 17183 +gcplusg 17236 Σg cgsu 17425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-seq 14003 df-0g 17426 df-gsum 17427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |