MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  x2times Structured version   Visualization version   GIF version

Theorem x2times 13361
Description: Extended real version of 2times 12429. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
x2times (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴))

Proof of Theorem x2times
StepHypRef Expression
1 df-2 12356 . . . 4 2 = (1 + 1)
2 1re 11290 . . . . 5 1 ∈ ℝ
3 rexadd 13294 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1))
42, 2, 3mp2an 691 . . . 4 (1 +𝑒 1) = (1 + 1)
51, 4eqtr4i 2771 . . 3 2 = (1 +𝑒 1)
65oveq1i 7458 . 2 (2 ·e 𝐴) = ((1 +𝑒 1) ·e 𝐴)
7 1xr 11349 . . . . 5 1 ∈ ℝ*
8 0le1 11813 . . . . 5 0 ≤ 1
97, 8pm3.2i 470 . . . 4 (1 ∈ ℝ* ∧ 0 ≤ 1)
10 xadddi2r 13360 . . . 4 (((1 ∈ ℝ* ∧ 0 ≤ 1) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐴 ∈ ℝ*) → ((1 +𝑒 1) ·e 𝐴) = ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴)))
119, 9, 10mp3an12 1451 . . 3 (𝐴 ∈ ℝ* → ((1 +𝑒 1) ·e 𝐴) = ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴)))
12 xmullid 13342 . . . 4 (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴)
1312, 12oveq12d 7466 . . 3 (𝐴 ∈ ℝ* → ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴)) = (𝐴 +𝑒 𝐴))
1411, 13eqtrd 2780 . 2 (𝐴 ∈ ℝ* → ((1 +𝑒 1) ·e 𝐴) = (𝐴 +𝑒 𝐴))
156, 14eqtrid 2792 1 (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323  cle 11325  2c2 12348   +𝑒 cxad 13173   ·e cxmu 13174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-2 12356  df-xneg 13175  df-xadd 13176  df-xmul 13177
This theorem is referenced by:  psmetge0  24343  xmetge0  24375  metnrmlem3  24902
  Copyright terms: Public domain W3C validator