![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > x2times | Structured version Visualization version GIF version |
Description: Extended real version of 2times 11452. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
x2times | ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11372 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1re 10326 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | rexadd 12308 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1)) | |
4 | 2, 2, 3 | mp2an 684 | . . . 4 ⊢ (1 +𝑒 1) = (1 + 1) |
5 | 1, 4 | eqtr4i 2822 | . . 3 ⊢ 2 = (1 +𝑒 1) |
6 | 5 | oveq1i 6886 | . 2 ⊢ (2 ·e 𝐴) = ((1 +𝑒 1) ·e 𝐴) |
7 | 2 | rexri 10385 | . . . . 5 ⊢ 1 ∈ ℝ* |
8 | 0le1 10841 | . . . . 5 ⊢ 0 ≤ 1 | |
9 | 7, 8 | pm3.2i 463 | . . . 4 ⊢ (1 ∈ ℝ* ∧ 0 ≤ 1) |
10 | xadddi2r 12373 | . . . 4 ⊢ (((1 ∈ ℝ* ∧ 0 ≤ 1) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐴 ∈ ℝ*) → ((1 +𝑒 1) ·e 𝐴) = ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴))) | |
11 | 9, 9, 10 | mp3an12 1576 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((1 +𝑒 1) ·e 𝐴) = ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴))) |
12 | xmulid2 12355 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | |
13 | 12, 12 | oveq12d 6894 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴)) = (𝐴 +𝑒 𝐴)) |
14 | 11, 13 | eqtrd 2831 | . 2 ⊢ (𝐴 ∈ ℝ* → ((1 +𝑒 1) ·e 𝐴) = (𝐴 +𝑒 𝐴)) |
15 | 6, 14 | syl5eq 2843 | 1 ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 (class class class)co 6876 ℝcr 10221 0cc0 10222 1c1 10223 + caddc 10225 ℝ*cxr 10360 ≤ cle 10362 2c2 11364 +𝑒 cxad 12187 ·e cxmu 12188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-2 11372 df-xneg 12189 df-xadd 12190 df-xmul 12191 |
This theorem is referenced by: psmetge0 22442 xmetge0 22474 metnrmlem3 22989 |
Copyright terms: Public domain | W3C validator |