| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > x2times | Structured version Visualization version GIF version | ||
| Description: Extended real version of 2times 12259. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| x2times | ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12191 | . . . 4 ⊢ 2 = (1 + 1) | |
| 2 | 1re 11115 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | rexadd 13134 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1)) | |
| 4 | 2, 2, 3 | mp2an 692 | . . . 4 ⊢ (1 +𝑒 1) = (1 + 1) |
| 5 | 1, 4 | eqtr4i 2755 | . . 3 ⊢ 2 = (1 +𝑒 1) |
| 6 | 5 | oveq1i 7359 | . 2 ⊢ (2 ·e 𝐴) = ((1 +𝑒 1) ·e 𝐴) |
| 7 | 1xr 11174 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 8 | 0le1 11643 | . . . . 5 ⊢ 0 ≤ 1 | |
| 9 | 7, 8 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℝ* ∧ 0 ≤ 1) |
| 10 | xadddi2r 13200 | . . . 4 ⊢ (((1 ∈ ℝ* ∧ 0 ≤ 1) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐴 ∈ ℝ*) → ((1 +𝑒 1) ·e 𝐴) = ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴))) | |
| 11 | 9, 9, 10 | mp3an12 1453 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((1 +𝑒 1) ·e 𝐴) = ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴))) |
| 12 | xmullid 13182 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | |
| 13 | 12, 12 | oveq12d 7367 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((1 ·e 𝐴) +𝑒 (1 ·e 𝐴)) = (𝐴 +𝑒 𝐴)) |
| 14 | 11, 13 | eqtrd 2764 | . 2 ⊢ (𝐴 ∈ ℝ* → ((1 +𝑒 1) ·e 𝐴) = (𝐴 +𝑒 𝐴)) |
| 15 | 6, 14 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 ℝ*cxr 11148 ≤ cle 11150 2c2 12183 +𝑒 cxad 13012 ·e cxmu 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-2 12191 df-xneg 13014 df-xadd 13015 df-xmul 13016 |
| This theorem is referenced by: psmetge0 24198 xmetge0 24230 metnrmlem3 24748 |
| Copyright terms: Public domain | W3C validator |