MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxr2 Structured version   Visualization version   GIF version

Theorem supxr2 12348
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.)
Assertion
Ref Expression
supxr2 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem supxr2
StepHypRef Expression
1 ssel2 3747 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
2 xrlenlt 10304 . . . . . . 7 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
31, 2sylan 561 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥𝐴) ∧ 𝐵 ∈ ℝ*) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
43an32s 623 . . . . 5 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
54ralbidva 3134 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 ¬ 𝐵 < 𝑥))
65anbi1d 607 . . 3 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → ((∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦)) ↔ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))))
76biimpa 462 . 2 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦)))
8 supxr 12347 . 2 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵)
97, 8syldan 571 1 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723   class class class wbr 4786  supcsup 8501  cr 10136  *cxr 10274   < clt 10275  cle 10276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470
This theorem is referenced by:  nmopun  29210  branmfn  29301  pjnmopi  29344  xrofsup  29870  esumcst  30462  esumfsup  30469  sge0seq  41176
  Copyright terms: Public domain W3C validator