Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supxr2 | Structured version Visualization version GIF version |
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) |
Ref | Expression |
---|---|
supxr2 | ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3921 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) | |
2 | xrlenlt 11086 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥)) | |
3 | 1, 2 | sylan 581 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ ℝ*) → (𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥)) |
4 | 3 | an32s 650 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥)) |
5 | 4 | ralbidva 3169 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥)) |
6 | 5 | anbi1d 631 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → ((∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)))) |
7 | 6 | biimpa 478 | . 2 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) |
8 | supxr 13093 | . 2 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | |
9 | 7, 8 | syldan 592 | 1 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 ⊆ wss 3892 class class class wbr 5081 supcsup 9243 ℝcr 10916 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 |
This theorem is referenced by: nmopun 30421 branmfn 30512 pjnmopi 30555 xrofsup 31135 esumcst 32076 esumfsup 32083 sge0seq 44034 |
Copyright terms: Public domain | W3C validator |