MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xralrple Structured version   Visualization version   GIF version

Theorem xralrple 13244
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
xralrple ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xralrple
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpge0 13046 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
21adantl 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
3 simplr 769 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
4 rpre 13041 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
54adantl 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
63, 5addge01d 11849 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (0 ≤ 𝑥𝐵 ≤ (𝐵 + 𝑥)))
72, 6mpbid 232 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + 𝑥))
8 simpll 767 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
93rexrd 11309 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
103, 5readdcld 11288 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
1110rexrd 11309 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
12 xrletr 13197 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
138, 9, 11, 12syl3anc 1370 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
147, 13mpan2d 694 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐴𝐵𝐴 ≤ (𝐵 + 𝑥)))
1514ralrimdva 3152 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
16 rexr 11305 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
1716adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
18 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
19 qbtwnxr 13239 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵 < 𝐴) → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴))
20193expia 1120 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
2117, 18, 20syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
22 simprrl 781 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 < 𝑦)
23 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℝ)
24 qre 12993 . . . . . . . . . . 11 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2524ad2antrl 728 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ)
26 difrp 13071 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2723, 25, 26syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2822, 27mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦𝐵) ∈ ℝ+)
29 simprrr 782 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 < 𝐴)
3025rexrd 11309 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ*)
31 simpll 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐴 ∈ ℝ*)
32 xrltnle 11326 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3330, 31, 32syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3429, 33mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴𝑦)
3523recnd 11287 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℂ)
3625recnd 11287 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℂ)
3735, 36pncan3d 11621 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 + (𝑦𝐵)) = 𝑦)
3837breq2d 5160 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐴 ≤ (𝐵 + (𝑦𝐵)) ↔ 𝐴𝑦))
3934, 38mtbird 325 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵)))
40 oveq2 7439 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝐵 + 𝑥) = (𝐵 + (𝑦𝐵)))
4140breq2d 5160 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝐴 ≤ (𝐵 + 𝑥) ↔ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4241notbid 318 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4342rspcev 3622 . . . . . . . 8 (((𝑦𝐵) ∈ ℝ+ ∧ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
4428, 39, 43syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
45 rexnal 3098 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4644, 45sylib 218 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4746rexlimdvaa 3154 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4821, 47syld 47 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4948con2d 134 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → ¬ 𝐵 < 𝐴))
50 xrlenlt 11324 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5116, 50sylan2 593 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5249, 51sylibrd 259 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → 𝐴𝐵))
5315, 52impbid 212 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156  *cxr 11292   < clt 11293  cle 11294  cmin 11490  cq 12988  +crp 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033
This theorem is referenced by:  alrple  13245  ovollb2  25538  ovolun  25548  ovoliun  25554  ovolscalem2  25563  nulmbl2  25585  omssubadd  34282  xrlexaddrp  45302  xralrple2  45304  xralrple4  45323  xralrple3  45324  xrralrecnnle  45333  carageniuncl  46479
  Copyright terms: Public domain W3C validator