MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xralrple Structured version   Visualization version   GIF version

Theorem xralrple 12592
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
xralrple ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xralrple
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpge0 12396 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
21adantl 484 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
3 simplr 767 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
4 rpre 12391 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
54adantl 484 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
63, 5addge01d 11222 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (0 ≤ 𝑥𝐵 ≤ (𝐵 + 𝑥)))
72, 6mpbid 234 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + 𝑥))
8 simpll 765 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
93rexrd 10685 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
103, 5readdcld 10664 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
1110rexrd 10685 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
12 xrletr 12545 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
138, 9, 11, 12syl3anc 1367 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
147, 13mpan2d 692 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐴𝐵𝐴 ≤ (𝐵 + 𝑥)))
1514ralrimdva 3189 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
16 rexr 10681 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
1716adantl 484 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
18 simpl 485 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
19 qbtwnxr 12587 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵 < 𝐴) → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴))
20193expia 1117 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
2117, 18, 20syl2anc 586 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
22 simprrl 779 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 < 𝑦)
23 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℝ)
24 qre 12347 . . . . . . . . . . 11 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2524ad2antrl 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ)
26 difrp 12421 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2723, 25, 26syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2822, 27mpbid 234 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦𝐵) ∈ ℝ+)
29 simprrr 780 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 < 𝐴)
3025rexrd 10685 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ*)
31 simpll 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐴 ∈ ℝ*)
32 xrltnle 10702 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3330, 31, 32syl2anc 586 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3429, 33mpbid 234 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴𝑦)
3523recnd 10663 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℂ)
3625recnd 10663 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℂ)
3735, 36pncan3d 10994 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 + (𝑦𝐵)) = 𝑦)
3837breq2d 5070 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐴 ≤ (𝐵 + (𝑦𝐵)) ↔ 𝐴𝑦))
3934, 38mtbird 327 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵)))
40 oveq2 7158 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝐵 + 𝑥) = (𝐵 + (𝑦𝐵)))
4140breq2d 5070 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝐴 ≤ (𝐵 + 𝑥) ↔ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4241notbid 320 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4342rspcev 3622 . . . . . . . 8 (((𝑦𝐵) ∈ ℝ+ ∧ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
4428, 39, 43syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
45 rexnal 3238 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4644, 45sylib 220 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4746rexlimdvaa 3285 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4821, 47syld 47 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4948con2d 136 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → ¬ 𝐵 < 𝐴))
50 xrlenlt 10700 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5116, 50sylan2 594 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5249, 51sylibrd 261 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → 𝐴𝐵))
5315, 52impbid 214 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  cmin 10864  cq 12342  +crp 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384
This theorem is referenced by:  alrple  12593  ovollb2  24084  ovolun  24094  ovoliun  24100  ovolscalem2  24109  nulmbl2  24131  omssubadd  31553  xrlexaddrp  41613  xralrple2  41615  xralrple4  41634  xralrple3  41635  xrralrecnnle  41646  carageniuncl  42799
  Copyright terms: Public domain W3C validator