MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xralrple Structured version   Visualization version   GIF version

Theorem xralrple 13107
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
xralrple ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xralrple
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpge0 12907 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
21adantl 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
3 simplr 768 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
4 rpre 12902 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
54adantl 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
63, 5addge01d 11708 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (0 ≤ 𝑥𝐵 ≤ (𝐵 + 𝑥)))
72, 6mpbid 232 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + 𝑥))
8 simpll 766 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
93rexrd 11165 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
103, 5readdcld 11144 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
1110rexrd 11165 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
12 xrletr 13060 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
138, 9, 11, 12syl3anc 1373 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
147, 13mpan2d 694 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐴𝐵𝐴 ≤ (𝐵 + 𝑥)))
1514ralrimdva 3129 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
16 rexr 11161 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
1716adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
18 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
19 qbtwnxr 13102 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵 < 𝐴) → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴))
20193expia 1121 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
2117, 18, 20syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
22 simprrl 780 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 < 𝑦)
23 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℝ)
24 qre 12854 . . . . . . . . . . 11 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2524ad2antrl 728 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ)
26 difrp 12933 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2723, 25, 26syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2822, 27mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦𝐵) ∈ ℝ+)
29 simprrr 781 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 < 𝐴)
3025rexrd 11165 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ*)
31 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐴 ∈ ℝ*)
32 xrltnle 11182 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3330, 31, 32syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3429, 33mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴𝑦)
3523recnd 11143 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℂ)
3625recnd 11143 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℂ)
3735, 36pncan3d 11478 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 + (𝑦𝐵)) = 𝑦)
3837breq2d 5104 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐴 ≤ (𝐵 + (𝑦𝐵)) ↔ 𝐴𝑦))
3934, 38mtbird 325 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵)))
40 oveq2 7357 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝐵 + 𝑥) = (𝐵 + (𝑦𝐵)))
4140breq2d 5104 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝐴 ≤ (𝐵 + 𝑥) ↔ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4241notbid 318 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4342rspcev 3577 . . . . . . . 8 (((𝑦𝐵) ∈ ℝ+ ∧ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
4428, 39, 43syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
45 rexnal 3081 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4644, 45sylib 218 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4746rexlimdvaa 3131 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4821, 47syld 47 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4948con2d 134 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → ¬ 𝐵 < 𝐴))
50 xrlenlt 11180 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5116, 50sylan2 593 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5249, 51sylibrd 259 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → 𝐴𝐵))
5315, 52impbid 212 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cq 12849  +crp 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894
This theorem is referenced by:  alrple  13108  ovollb2  25388  ovolun  25398  ovoliun  25404  ovolscalem2  25413  nulmbl2  25435  omssubadd  34268  xrlexaddrp  45332  xralrple2  45334  xralrple4  45352  xralrple3  45353  xrralrecnnle  45362  carageniuncl  46504
  Copyright terms: Public domain W3C validator