MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xralrple Structured version   Visualization version   GIF version

Theorem xralrple 12921
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
xralrple ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xralrple
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpge0 12725 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
21adantl 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
3 simplr 765 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
4 rpre 12720 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
54adantl 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
63, 5addge01d 11546 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (0 ≤ 𝑥𝐵 ≤ (𝐵 + 𝑥)))
72, 6mpbid 231 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + 𝑥))
8 simpll 763 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
93rexrd 11009 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
103, 5readdcld 10988 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
1110rexrd 11009 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
12 xrletr 12874 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
138, 9, 11, 12syl3anc 1369 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
147, 13mpan2d 690 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐴𝐵𝐴 ≤ (𝐵 + 𝑥)))
1514ralrimdva 3114 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
16 rexr 11005 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
1716adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
18 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
19 qbtwnxr 12916 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵 < 𝐴) → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴))
20193expia 1119 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
2117, 18, 20syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
22 simprrl 777 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 < 𝑦)
23 simplr 765 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℝ)
24 qre 12675 . . . . . . . . . . 11 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2524ad2antrl 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ)
26 difrp 12750 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2723, 25, 26syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2822, 27mpbid 231 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦𝐵) ∈ ℝ+)
29 simprrr 778 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 < 𝐴)
3025rexrd 11009 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ*)
31 simpll 763 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐴 ∈ ℝ*)
32 xrltnle 11026 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3330, 31, 32syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3429, 33mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴𝑦)
3523recnd 10987 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℂ)
3625recnd 10987 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℂ)
3735, 36pncan3d 11318 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 + (𝑦𝐵)) = 𝑦)
3837breq2d 5090 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐴 ≤ (𝐵 + (𝑦𝐵)) ↔ 𝐴𝑦))
3934, 38mtbird 324 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵)))
40 oveq2 7276 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝐵 + 𝑥) = (𝐵 + (𝑦𝐵)))
4140breq2d 5090 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝐴 ≤ (𝐵 + 𝑥) ↔ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4241notbid 317 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4342rspcev 3560 . . . . . . . 8 (((𝑦𝐵) ∈ ℝ+ ∧ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
4428, 39, 43syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
45 rexnal 3167 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4644, 45sylib 217 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4746rexlimdvaa 3215 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4821, 47syld 47 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4948con2d 134 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → ¬ 𝐵 < 𝐴))
50 xrlenlt 11024 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5116, 50sylan2 592 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5249, 51sylibrd 258 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → 𝐴𝐵))
5315, 52impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wrex 3066   class class class wbr 5078  (class class class)co 7268  cr 10854  0cc0 10855   + caddc 10858  *cxr 10992   < clt 10993  cle 10994  cmin 11188  cq 12670  +crp 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713
This theorem is referenced by:  alrple  12922  ovollb2  24634  ovolun  24644  ovoliun  24650  ovolscalem2  24659  nulmbl2  24681  omssubadd  32246  xrlexaddrp  42845  xralrple2  42847  xralrple4  42866  xralrple3  42867  xrralrecnnle  42876  carageniuncl  44015
  Copyright terms: Public domain W3C validator