MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xralrple Structured version   Visualization version   GIF version

Theorem xralrple 12331
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
xralrple ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xralrple
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpge0 12134 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
21adantl 475 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
3 simplr 785 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
4 rpre 12127 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
54adantl 475 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
63, 5addge01d 10947 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (0 ≤ 𝑥𝐵 ≤ (𝐵 + 𝑥)))
72, 6mpbid 224 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + 𝑥))
8 simpll 783 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
93rexrd 10413 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
103, 5readdcld 10393 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
1110rexrd 10413 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
12 xrletr 12284 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
138, 9, 11, 12syl3anc 1494 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐴𝐵𝐵 ≤ (𝐵 + 𝑥)) → 𝐴 ≤ (𝐵 + 𝑥)))
147, 13mpan2d 685 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐴𝐵𝐴 ≤ (𝐵 + 𝑥)))
1514ralrimdva 3178 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
16 rexr 10409 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
1716adantl 475 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
18 simpl 476 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
19 qbtwnxr 12326 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵 < 𝐴) → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴))
20193expia 1154 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
2117, 18, 20syl2anc 579 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴)))
22 simprrl 799 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 < 𝑦)
23 simplr 785 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℝ)
24 qre 12083 . . . . . . . . . . 11 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2524ad2antrl 719 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ)
26 difrp 12159 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2723, 25, 26syl2anc 579 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 < 𝑦 ↔ (𝑦𝐵) ∈ ℝ+))
2822, 27mpbid 224 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦𝐵) ∈ ℝ+)
29 simprrr 800 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 < 𝐴)
3025rexrd 10413 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℝ*)
31 simpll 783 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐴 ∈ ℝ*)
32 xrltnle 10431 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3330, 31, 32syl2anc 579 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝑦 < 𝐴 ↔ ¬ 𝐴𝑦))
3429, 33mpbid 224 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴𝑦)
3523recnd 10392 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝐵 ∈ ℂ)
3625recnd 10392 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → 𝑦 ∈ ℂ)
3735, 36pncan3d 10723 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐵 + (𝑦𝐵)) = 𝑦)
3837breq2d 4887 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → (𝐴 ≤ (𝐵 + (𝑦𝐵)) ↔ 𝐴𝑦))
3934, 38mtbird 317 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵)))
40 oveq2 6918 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝐵 + 𝑥) = (𝐵 + (𝑦𝐵)))
4140breq2d 4887 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝐴 ≤ (𝐵 + 𝑥) ↔ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4241notbid 310 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))))
4342rspcev 3526 . . . . . . . 8 (((𝑦𝐵) ∈ ℝ+ ∧ ¬ 𝐴 ≤ (𝐵 + (𝑦𝐵))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
4428, 39, 43syl2anc 579 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥))
45 rexnal 3203 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ 𝐴 ≤ (𝐵 + 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4644, 45sylib 210 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℚ ∧ (𝐵 < 𝑦𝑦 < 𝐴))) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
4746rexlimdvaa 3241 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℚ (𝐵 < 𝑦𝑦 < 𝐴) → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4821, 47syld 47 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
4948con2d 132 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → ¬ 𝐵 < 𝐴))
50 xrlenlt 10429 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5116, 50sylan2 586 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5249, 51sylibrd 251 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥) → 𝐴𝐵))
5315, 52impbid 204 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118   class class class wbr 4875  (class class class)co 6910  cr 10258  0cc0 10259   + caddc 10262  *cxr 10397   < clt 10398  cle 10399  cmin 10592  cq 12078  +crp 12119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120
This theorem is referenced by:  alrple  12332  ovollb2  23662  ovolun  23672  ovoliun  23678  ovolscalem2  23687  nulmbl2  23709  omssubadd  30903  xrlexaddrp  40359  xralrple2  40361  xralrple4  40380  xralrple3  40381  xrralrecnnle  40393  carageniuncl  41525
  Copyright terms: Public domain W3C validator