| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version | ||
| Description: Alias for axlttrn 11206, for naming consistency with lttri 11260. New proofs should generally use this instead of ax-pre-lttrn 11103. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 11206 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: ltso 11214 lelttr 11224 ltletr 11226 lttri 11260 lttrd 11295 lt2sub 11636 mulgt1OLD 12001 recgt1i 12040 recreclt 12042 sup2 12099 nnge1 12174 recnz 12569 gtndiv 12571 xrlttr 13060 fzo1fzo0n0 13636 flflp1 13729 1mod 13825 seqf1olem1 13966 expnbnd 14157 expnlbnd 14158 swrd2lsw 14877 2swrd2eqwrdeq 14878 sin01gt0 16117 cos01gt0 16118 p1modz1 16188 ltoddhalfle 16290 nno 16311 dvdsnprmd 16619 chfacfscmul0 22761 chfacfpmmul0 22765 iscmet3lem1 25207 bcthlem4 25243 bcthlem5 25244 ivthlem2 25369 ovolicc2lem3 25436 mbfaddlem 25577 reeff1olem 26372 logdivlti 26545 ftalem2 27000 chtub 27139 bclbnd 27207 efexple 27208 bposlem1 27211 lgsquadlem2 27308 pntlem3 27536 axlowdimlem16 28920 pthdlem1 29729 wwlksnredwwlkn 29858 clwwlkel 30008 clwwlknonex2lem2 30070 frgrogt3nreg 30359 poimirlem2 37601 sn-sup2 42464 stoweidlem34 46016 m1mod0mod1 47339 smonoord 47356 sbgoldbalt 47766 bgoldbtbndlem3 47792 bgoldbtbndlem4 47793 tgoldbach 47802 regt1loggt0 48522 rege1logbrege0 48544 dignn0flhalflem1 48601 |
| Copyright terms: Public domain | W3C validator |