![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version |
Description: Alias for axlttrn 10513, for naming consistency with lttri 10566. New proofs should generally use this instead of ax-pre-lttrn 10410. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 10513 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 class class class wbr 4929 ℝcr 10334 < clt 10474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-pre-lttrn 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 |
This theorem is referenced by: ltso 10521 lelttr 10531 ltletr 10532 lttri 10566 lttrd 10601 lt2sub 10939 mulgt1 11300 recgt1i 11338 recreclt 11340 sup2 11398 nnge1 11468 recnz 11870 gtndiv 11872 xrlttr 12350 fzo1fzo0n0 12903 flflp1 12992 1mod 13086 seqf1olem1 13224 expnbnd 13408 expnlbnd 13409 swrd2lsw 14176 2swrd2eqwrdeq 14177 2swrd2eqwrdeqOLD 14178 sin01gt0 15403 cos01gt0 15404 p1modz1 15474 ltoddhalfle 15570 nno 15593 dvdsnprmd 15890 chfacfscmul0 21170 chfacfpmmul0 21174 iscmet3lem1 23597 bcthlem4 23633 bcthlem5 23634 ivthlem2 23756 ovolicc2lem3 23823 mbfaddlem 23964 reeff1olem 24737 logdivlti 24904 ftalem2 25353 chtub 25490 bclbnd 25558 efexple 25559 bposlem1 25562 lgsquadlem2 25659 pntlem3 25887 axlowdimlem16 26446 pthdlem1 27255 wwlksnredwwlkn 27384 wwlksnredwwlknOLD 27385 clwwlkel 27563 clwwlknonex2lem2 27636 frgrogt3nreg 27954 poimirlem2 34332 stoweidlem34 41748 m1mod0mod1 42933 smonoord 42935 sbgoldbalt 43312 bgoldbtbndlem3 43338 bgoldbtbndlem4 43339 tgoldbach 43348 difmodm1lt 43948 regt1loggt0 43962 rege1logbrege0 43984 dignn0flhalflem1 44041 |
Copyright terms: Public domain | W3C validator |