| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version | ||
| Description: Alias for axlttrn 11246, for naming consistency with lttri 11300. New proofs should generally use this instead of ax-pre-lttrn 11143. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 11246 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: ltso 11254 lelttr 11264 ltletr 11266 lttri 11300 lttrd 11335 lt2sub 11676 mulgt1OLD 12041 recgt1i 12080 recreclt 12082 sup2 12139 nnge1 12214 recnz 12609 gtndiv 12611 xrlttr 13100 fzo1fzo0n0 13676 flflp1 13769 1mod 13865 seqf1olem1 14006 expnbnd 14197 expnlbnd 14198 swrd2lsw 14918 2swrd2eqwrdeq 14919 sin01gt0 16158 cos01gt0 16159 p1modz1 16229 ltoddhalfle 16331 nno 16352 dvdsnprmd 16660 chfacfscmul0 22745 chfacfpmmul0 22749 iscmet3lem1 25191 bcthlem4 25227 bcthlem5 25228 ivthlem2 25353 ovolicc2lem3 25420 mbfaddlem 25561 reeff1olem 26356 logdivlti 26529 ftalem2 26984 chtub 27123 bclbnd 27191 efexple 27192 bposlem1 27195 lgsquadlem2 27292 pntlem3 27520 axlowdimlem16 28884 pthdlem1 29696 wwlksnredwwlkn 29825 clwwlkel 29975 clwwlknonex2lem2 30037 frgrogt3nreg 30326 poimirlem2 37616 sn-sup2 42479 stoweidlem34 46032 m1mod0mod1 47355 smonoord 47372 sbgoldbalt 47782 bgoldbtbndlem3 47808 bgoldbtbndlem4 47809 tgoldbach 47818 regt1loggt0 48525 rege1logbrege0 48547 dignn0flhalflem1 48604 |
| Copyright terms: Public domain | W3C validator |