Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version |
Description: Alias for axlttrn 10978, for naming consistency with lttri 11031. New proofs should generally use this instead of ax-pre-lttrn 10877. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 10978 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: ltso 10986 lelttr 10996 ltletr 10997 lttri 11031 lttrd 11066 lt2sub 11403 mulgt1 11764 recgt1i 11802 recreclt 11804 sup2 11861 nnge1 11931 recnz 12325 gtndiv 12327 xrlttr 12803 fzo1fzo0n0 13366 flflp1 13455 1mod 13551 seqf1olem1 13690 expnbnd 13875 expnlbnd 13876 swrd2lsw 14593 2swrd2eqwrdeq 14594 sin01gt0 15827 cos01gt0 15828 p1modz1 15898 ltoddhalfle 15998 nno 16019 dvdsnprmd 16323 chfacfscmul0 21915 chfacfpmmul0 21919 iscmet3lem1 24360 bcthlem4 24396 bcthlem5 24397 ivthlem2 24521 ovolicc2lem3 24588 mbfaddlem 24729 reeff1olem 25510 logdivlti 25680 ftalem2 26128 chtub 26265 bclbnd 26333 efexple 26334 bposlem1 26337 lgsquadlem2 26434 pntlem3 26662 axlowdimlem16 27228 pthdlem1 28035 wwlksnredwwlkn 28161 clwwlkel 28311 clwwlknonex2lem2 28373 frgrogt3nreg 28662 poimirlem2 35706 sn-sup2 40360 stoweidlem34 43465 m1mod0mod1 44709 smonoord 44711 sbgoldbalt 45121 bgoldbtbndlem3 45147 bgoldbtbndlem4 45148 tgoldbach 45157 difmodm1lt 45756 regt1loggt0 45770 rege1logbrege0 45792 dignn0flhalflem1 45849 |
Copyright terms: Public domain | W3C validator |