Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version |
Description: Alias for axlttrn 10905, for naming consistency with lttri 10958. New proofs should generally use this instead of ax-pre-lttrn 10804. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 10905 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 class class class wbr 5053 ℝcr 10728 < clt 10867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 |
This theorem is referenced by: ltso 10913 lelttr 10923 ltletr 10924 lttri 10958 lttrd 10993 lt2sub 11330 mulgt1 11691 recgt1i 11729 recreclt 11731 sup2 11788 nnge1 11858 recnz 12252 gtndiv 12254 xrlttr 12730 fzo1fzo0n0 13293 flflp1 13382 1mod 13476 seqf1olem1 13615 expnbnd 13799 expnlbnd 13800 swrd2lsw 14517 2swrd2eqwrdeq 14518 sin01gt0 15751 cos01gt0 15752 p1modz1 15822 ltoddhalfle 15922 nno 15943 dvdsnprmd 16247 chfacfscmul0 21755 chfacfpmmul0 21759 iscmet3lem1 24188 bcthlem4 24224 bcthlem5 24225 ivthlem2 24349 ovolicc2lem3 24416 mbfaddlem 24557 reeff1olem 25338 logdivlti 25508 ftalem2 25956 chtub 26093 bclbnd 26161 efexple 26162 bposlem1 26165 lgsquadlem2 26262 pntlem3 26490 axlowdimlem16 27048 pthdlem1 27853 wwlksnredwwlkn 27979 clwwlkel 28129 clwwlknonex2lem2 28191 frgrogt3nreg 28480 poimirlem2 35516 sn-sup2 40147 stoweidlem34 43250 m1mod0mod1 44494 smonoord 44496 sbgoldbalt 44906 bgoldbtbndlem3 44932 bgoldbtbndlem4 44933 tgoldbach 44942 difmodm1lt 45541 regt1loggt0 45555 rege1logbrege0 45577 dignn0flhalflem1 45634 |
Copyright terms: Public domain | W3C validator |