| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version | ||
| Description: Alias for axlttrn 11192, for naming consistency with lttri 11246. New proofs should generally use this instead of ax-pre-lttrn 11088. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 11192 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5093 ℝcr 11012 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 |
| This theorem is referenced by: ltso 11200 lelttr 11210 ltletr 11212 lttri 11246 lttrd 11281 lt2sub 11622 mulgt1OLD 11987 recgt1i 12026 recreclt 12028 sup2 12085 nnge1 12160 recnz 12554 gtndiv 12556 xrlttr 13041 fzo1fzo0n0 13617 flflp1 13713 1mod 13809 seqf1olem1 13950 expnbnd 14141 expnlbnd 14142 swrd2lsw 14861 2swrd2eqwrdeq 14862 sin01gt0 16101 cos01gt0 16102 p1modz1 16172 ltoddhalfle 16274 nno 16295 dvdsnprmd 16603 chfacfscmul0 22774 chfacfpmmul0 22778 iscmet3lem1 25219 bcthlem4 25255 bcthlem5 25256 ivthlem2 25381 ovolicc2lem3 25448 mbfaddlem 25589 reeff1olem 26384 logdivlti 26557 ftalem2 27012 chtub 27151 bclbnd 27219 efexple 27220 bposlem1 27223 lgsquadlem2 27320 pntlem3 27548 axlowdimlem16 28937 pthdlem1 29746 wwlksnredwwlkn 29875 clwwlkel 30028 clwwlknonex2lem2 30090 frgrogt3nreg 30379 poimirlem2 37682 sn-sup2 42609 stoweidlem34 46156 m1mod0mod1 47478 smonoord 47495 sbgoldbalt 47905 bgoldbtbndlem3 47931 bgoldbtbndlem4 47932 tgoldbach 47941 regt1loggt0 48661 rege1logbrege0 48683 dignn0flhalflem1 48740 |
| Copyright terms: Public domain | W3C validator |