![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version |
Description: Alias for axlttrn 11362, for naming consistency with lttri 11416. New proofs should generally use this instead of ax-pre-lttrn 11259. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 11362 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: ltso 11370 lelttr 11380 ltletr 11382 lttri 11416 lttrd 11451 lt2sub 11788 mulgt1OLD 12153 recgt1i 12192 recreclt 12194 sup2 12251 nnge1 12321 recnz 12718 gtndiv 12720 xrlttr 13202 fzo1fzo0n0 13767 flflp1 13858 1mod 13954 seqf1olem1 14092 expnbnd 14281 expnlbnd 14282 swrd2lsw 15001 2swrd2eqwrdeq 15002 sin01gt0 16238 cos01gt0 16239 p1modz1 16309 ltoddhalfle 16409 nno 16430 dvdsnprmd 16737 chfacfscmul0 22885 chfacfpmmul0 22889 iscmet3lem1 25344 bcthlem4 25380 bcthlem5 25381 ivthlem2 25506 ovolicc2lem3 25573 mbfaddlem 25714 reeff1olem 26508 logdivlti 26680 ftalem2 27135 chtub 27274 bclbnd 27342 efexple 27343 bposlem1 27346 lgsquadlem2 27443 pntlem3 27671 axlowdimlem16 28990 pthdlem1 29802 wwlksnredwwlkn 29928 clwwlkel 30078 clwwlknonex2lem2 30140 frgrogt3nreg 30429 poimirlem2 37582 sn-sup2 42447 stoweidlem34 45955 m1mod0mod1 47243 smonoord 47245 sbgoldbalt 47655 bgoldbtbndlem3 47681 bgoldbtbndlem4 47682 tgoldbach 47691 difmodm1lt 48256 regt1loggt0 48270 rege1logbrege0 48292 dignn0flhalflem1 48349 |
Copyright terms: Public domain | W3C validator |