Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version |
Description: Alias for axlttrn 11047, for naming consistency with lttri 11101. New proofs should generally use this instead of ax-pre-lttrn 10946. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 11047 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: ltso 11055 lelttr 11065 ltletr 11067 lttri 11101 lttrd 11136 lt2sub 11473 mulgt1 11834 recgt1i 11872 recreclt 11874 sup2 11931 nnge1 12001 recnz 12395 gtndiv 12397 xrlttr 12874 fzo1fzo0n0 13438 flflp1 13527 1mod 13623 seqf1olem1 13762 expnbnd 13947 expnlbnd 13948 swrd2lsw 14665 2swrd2eqwrdeq 14666 sin01gt0 15899 cos01gt0 15900 p1modz1 15970 ltoddhalfle 16070 nno 16091 dvdsnprmd 16395 chfacfscmul0 22007 chfacfpmmul0 22011 iscmet3lem1 24455 bcthlem4 24491 bcthlem5 24492 ivthlem2 24616 ovolicc2lem3 24683 mbfaddlem 24824 reeff1olem 25605 logdivlti 25775 ftalem2 26223 chtub 26360 bclbnd 26428 efexple 26429 bposlem1 26432 lgsquadlem2 26529 pntlem3 26757 axlowdimlem16 27325 pthdlem1 28134 wwlksnredwwlkn 28260 clwwlkel 28410 clwwlknonex2lem2 28472 frgrogt3nreg 28761 poimirlem2 35779 sn-sup2 40439 stoweidlem34 43575 m1mod0mod1 44821 smonoord 44823 sbgoldbalt 45233 bgoldbtbndlem3 45259 bgoldbtbndlem4 45260 tgoldbach 45269 difmodm1lt 45868 regt1loggt0 45882 rege1logbrege0 45904 dignn0flhalflem1 45961 |
Copyright terms: Public domain | W3C validator |