| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version | ||
| Description: Alias for axlttrn 11253, for naming consistency with lttri 11307. New proofs should generally use this instead of ax-pre-lttrn 11150. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 11253 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: ltso 11261 lelttr 11271 ltletr 11273 lttri 11307 lttrd 11342 lt2sub 11683 mulgt1OLD 12048 recgt1i 12087 recreclt 12089 sup2 12146 nnge1 12221 recnz 12616 gtndiv 12618 xrlttr 13107 fzo1fzo0n0 13683 flflp1 13776 1mod 13872 seqf1olem1 14013 expnbnd 14204 expnlbnd 14205 swrd2lsw 14925 2swrd2eqwrdeq 14926 sin01gt0 16165 cos01gt0 16166 p1modz1 16236 ltoddhalfle 16338 nno 16359 dvdsnprmd 16667 chfacfscmul0 22752 chfacfpmmul0 22756 iscmet3lem1 25198 bcthlem4 25234 bcthlem5 25235 ivthlem2 25360 ovolicc2lem3 25427 mbfaddlem 25568 reeff1olem 26363 logdivlti 26536 ftalem2 26991 chtub 27130 bclbnd 27198 efexple 27199 bposlem1 27202 lgsquadlem2 27299 pntlem3 27527 axlowdimlem16 28891 pthdlem1 29703 wwlksnredwwlkn 29832 clwwlkel 29982 clwwlknonex2lem2 30044 frgrogt3nreg 30333 poimirlem2 37623 sn-sup2 42486 stoweidlem34 46039 m1mod0mod1 47359 smonoord 47376 sbgoldbalt 47786 bgoldbtbndlem3 47812 bgoldbtbndlem4 47813 tgoldbach 47822 regt1loggt0 48529 rege1logbrege0 48551 dignn0flhalflem1 48608 |
| Copyright terms: Public domain | W3C validator |