| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version | ||
| Description: Alias for axlttrn 11307, for naming consistency with lttri 11361. New proofs should generally use this instead of ax-pre-lttrn 11204. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 11307 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: ltso 11315 lelttr 11325 ltletr 11327 lttri 11361 lttrd 11396 lt2sub 11735 mulgt1OLD 12100 recgt1i 12139 recreclt 12141 sup2 12198 nnge1 12268 recnz 12668 gtndiv 12670 xrlttr 13156 fzo1fzo0n0 13731 flflp1 13824 1mod 13920 seqf1olem1 14059 expnbnd 14250 expnlbnd 14251 swrd2lsw 14971 2swrd2eqwrdeq 14972 sin01gt0 16208 cos01gt0 16209 p1modz1 16279 ltoddhalfle 16380 nno 16401 dvdsnprmd 16709 chfacfscmul0 22796 chfacfpmmul0 22800 iscmet3lem1 25243 bcthlem4 25279 bcthlem5 25280 ivthlem2 25405 ovolicc2lem3 25472 mbfaddlem 25613 reeff1olem 26408 logdivlti 26581 ftalem2 27036 chtub 27175 bclbnd 27243 efexple 27244 bposlem1 27247 lgsquadlem2 27344 pntlem3 27572 axlowdimlem16 28936 pthdlem1 29748 wwlksnredwwlkn 29877 clwwlkel 30027 clwwlknonex2lem2 30089 frgrogt3nreg 30378 poimirlem2 37646 sn-sup2 42514 stoweidlem34 46063 m1mod0mod1 47383 smonoord 47385 sbgoldbalt 47795 bgoldbtbndlem3 47821 bgoldbtbndlem4 47822 tgoldbach 47831 difmodm1lt 48502 regt1loggt0 48516 rege1logbrege0 48538 dignn0flhalflem1 48595 |
| Copyright terms: Public domain | W3C validator |