![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version |
Description: Alias for axlttrn 11331, for naming consistency with lttri 11385. New proofs should generally use this instead of ax-pre-lttrn 11228. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 11331 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: ltso 11339 lelttr 11349 ltletr 11351 lttri 11385 lttrd 11420 lt2sub 11759 mulgt1OLD 12124 recgt1i 12163 recreclt 12165 sup2 12222 nnge1 12292 recnz 12691 gtndiv 12693 xrlttr 13179 fzo1fzo0n0 13751 flflp1 13844 1mod 13940 seqf1olem1 14079 expnbnd 14268 expnlbnd 14269 swrd2lsw 14988 2swrd2eqwrdeq 14989 sin01gt0 16223 cos01gt0 16224 p1modz1 16294 ltoddhalfle 16395 nno 16416 dvdsnprmd 16724 chfacfscmul0 22880 chfacfpmmul0 22884 iscmet3lem1 25339 bcthlem4 25375 bcthlem5 25376 ivthlem2 25501 ovolicc2lem3 25568 mbfaddlem 25709 reeff1olem 26505 logdivlti 26677 ftalem2 27132 chtub 27271 bclbnd 27339 efexple 27340 bposlem1 27343 lgsquadlem2 27440 pntlem3 27668 axlowdimlem16 28987 pthdlem1 29799 wwlksnredwwlkn 29925 clwwlkel 30075 clwwlknonex2lem2 30137 frgrogt3nreg 30426 poimirlem2 37609 sn-sup2 42478 stoweidlem34 45990 m1mod0mod1 47294 smonoord 47296 sbgoldbalt 47706 bgoldbtbndlem3 47732 bgoldbtbndlem4 47733 tgoldbach 47742 difmodm1lt 48372 regt1loggt0 48386 rege1logbrege0 48408 dignn0flhalflem1 48465 |
Copyright terms: Public domain | W3C validator |