| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version GIF version | ||
| Description: Alias for axlttrn 11182, for naming consistency with lttri 11236. New proofs should generally use this instead of ax-pre-lttrn 11078. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 11182 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5091 ℝcr 11002 < clt 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 |
| This theorem is referenced by: ltso 11190 lelttr 11200 ltletr 11202 lttri 11236 lttrd 11271 lt2sub 11612 mulgt1OLD 11977 recgt1i 12016 recreclt 12018 sup2 12075 nnge1 12150 recnz 12545 gtndiv 12547 xrlttr 13036 fzo1fzo0n0 13612 flflp1 13708 1mod 13804 seqf1olem1 13945 expnbnd 14136 expnlbnd 14137 swrd2lsw 14856 2swrd2eqwrdeq 14857 sin01gt0 16096 cos01gt0 16097 p1modz1 16167 ltoddhalfle 16269 nno 16290 dvdsnprmd 16598 chfacfscmul0 22771 chfacfpmmul0 22775 iscmet3lem1 25216 bcthlem4 25252 bcthlem5 25253 ivthlem2 25378 ovolicc2lem3 25445 mbfaddlem 25586 reeff1olem 26381 logdivlti 26554 ftalem2 27009 chtub 27148 bclbnd 27216 efexple 27217 bposlem1 27220 lgsquadlem2 27317 pntlem3 27545 axlowdimlem16 28933 pthdlem1 29742 wwlksnredwwlkn 29871 clwwlkel 30021 clwwlknonex2lem2 30083 frgrogt3nreg 30372 poimirlem2 37661 sn-sup2 42523 stoweidlem34 46071 m1mod0mod1 47384 smonoord 47401 sbgoldbalt 47811 bgoldbtbndlem3 47837 bgoldbtbndlem4 47838 tgoldbach 47847 regt1loggt0 48567 rege1logbrege0 48589 dignn0flhalflem1 48646 |
| Copyright terms: Public domain | W3C validator |