ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5 Unicode version

Theorem gausslemma2dlem5 15182
Description: Lemma 5 for gausslemma2d 15185. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem5  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M, k    P, k
Allowed substitution hints:    R( x)    N( x, k)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
51, 2, 3, 4gausslemma2dlem5a 15181 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
61gausslemma2dlem0a 15165 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
76nnzd 9438 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
8 4nn 9145 . . . . . . . . . 10  |-  4  e.  NN
9 znq 9689 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
107, 8, 9sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( P  /  4
)  e.  QQ )
1110flqcld 10346 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( P  /  4 ) )  e.  ZZ )
124, 11eqeltrid 2280 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1312peano2zd 9442 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
141, 2gausslemma2dlem0b 15166 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
1514nnzd 9438 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
1613, 15fzfigd 10502 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  e.  Fin )
17 neg1cn 9087 . . . . . 6  |-  -u 1  e.  CC
1817a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  -u 1  e.  CC )
19 elfzelz 10091 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
20 2z 9345 . . . . . . . . 9  |-  2  e.  ZZ
2120a1i 9 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  ZZ )
2219, 21zmulcld 9445 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  ZZ )
2322zcnd 9440 . . . . . 6  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  CC )
2423adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  CC )
2516, 18, 24fprodmul 11734 . . . 4  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  (
prod_ k  e.  (
( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
26 fprodconst 11763 . . . . . . 7  |-  ( ( ( ( M  + 
1 ) ... H
)  e.  Fin  /\  -u 1  e.  CC )  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
2716, 17, 26sylancl 413 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
28 nnoddn2prm 12398 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
29 nnz 9336 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  ZZ )
30 oddm1d2 12033 . . . . . . . . . . . . . 14  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3129, 30syl 14 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3231biimpa 296 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( P  -  1 )  / 
2 )  e.  ZZ )
331, 28, 323syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  ZZ )
342, 33eqeltrid 2280 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ZZ )
351, 4, 2gausslemma2dlem0f 15170 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  <_  H )
36 eluz2 9598 . . . . . . . . . 10  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  ( M  +  1 )  <_  H ) )
3713, 34, 35, 36syl3anbrc 1183 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( ZZ>= `  ( M  +  1
) ) )
38 hashfz 10892 . . . . . . . . 9  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( `  (
( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  +  1 ) )  +  1 ) )
3937, 38syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  + 
1 ) )  +  1 ) )
4034zcnd 9440 . . . . . . . . . 10  |-  ( ph  ->  H  e.  CC )
4112zcnd 9440 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
42 1cnd 8035 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
4340, 41, 42nppcan2d 8356 . . . . . . . . 9  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  ( H  -  M ) )
44 gausslemma2d.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
4543, 44eqtr4di 2244 . . . . . . . 8  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  N )
4639, 45eqtrd 2226 . . . . . . 7  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  N )
4746oveq2d 5934 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( `  ( ( M  +  1 ) ... H ) ) )  =  ( -u
1 ^ N ) )
4827, 47eqtrd 2226 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ N
) )
4948oveq1d 5933 . . . 4  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  =  ( ( -u
1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5025, 49eqtrd 2226 . . 3  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5150oveq1d 5933 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  mod  P
)  =  ( ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  mod  P ) )
525, 51eqtrd 2226 1  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    \ cdif 3150   ifcif 3557   {csn 3618   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   Fincfn 6794   CCcc 7870   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   -ucneg 8191    / cdiv 8691   NNcn 8982   2c2 9033   4c4 9035   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   ...cfz 10074   |_cfl 10337    mod cmo 10393   ^cexp 10609  ♯chash 10846   prod_cprod 11693    || cdvds 11930   Primecprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-prm 12246
This theorem is referenced by:  gausslemma2dlem6  15183
  Copyright terms: Public domain W3C validator