ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5 Unicode version

Theorem gausslemma2dlem5 15393
Description: Lemma 5 for gausslemma2d 15396. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem5  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M, k    P, k
Allowed substitution hints:    R( x)    N( x, k)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
51, 2, 3, 4gausslemma2dlem5a 15392 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
61gausslemma2dlem0a 15376 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
76nnzd 9466 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
8 4nn 9173 . . . . . . . . . 10  |-  4  e.  NN
9 znq 9717 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
107, 8, 9sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( P  /  4
)  e.  QQ )
1110flqcld 10386 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( P  /  4 ) )  e.  ZZ )
124, 11eqeltrid 2283 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1312peano2zd 9470 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
141, 2gausslemma2dlem0b 15377 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
1514nnzd 9466 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
1613, 15fzfigd 10542 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  e.  Fin )
17 neg1cn 9114 . . . . . 6  |-  -u 1  e.  CC
1817a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  -u 1  e.  CC )
19 elfzelz 10119 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
20 2z 9373 . . . . . . . . 9  |-  2  e.  ZZ
2120a1i 9 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  ZZ )
2219, 21zmulcld 9473 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  ZZ )
2322zcnd 9468 . . . . . 6  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  CC )
2423adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  CC )
2516, 18, 24fprodmul 11775 . . . 4  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  (
prod_ k  e.  (
( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
26 fprodconst 11804 . . . . . . 7  |-  ( ( ( ( M  + 
1 ) ... H
)  e.  Fin  /\  -u 1  e.  CC )  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
2716, 17, 26sylancl 413 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
28 nnoddn2prm 12456 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
29 nnz 9364 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  ZZ )
30 oddm1d2 12076 . . . . . . . . . . . . . 14  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3129, 30syl 14 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3231biimpa 296 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( P  -  1 )  / 
2 )  e.  ZZ )
331, 28, 323syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  ZZ )
342, 33eqeltrid 2283 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ZZ )
351, 4, 2gausslemma2dlem0f 15381 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  <_  H )
36 eluz2 9626 . . . . . . . . . 10  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  ( M  +  1 )  <_  H ) )
3713, 34, 35, 36syl3anbrc 1183 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( ZZ>= `  ( M  +  1
) ) )
38 hashfz 10932 . . . . . . . . 9  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( `  (
( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  +  1 ) )  +  1 ) )
3937, 38syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  + 
1 ) )  +  1 ) )
4034zcnd 9468 . . . . . . . . . 10  |-  ( ph  ->  H  e.  CC )
4112zcnd 9468 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
42 1cnd 8061 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
4340, 41, 42nppcan2d 8382 . . . . . . . . 9  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  ( H  -  M ) )
44 gausslemma2d.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
4543, 44eqtr4di 2247 . . . . . . . 8  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  N )
4639, 45eqtrd 2229 . . . . . . 7  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  N )
4746oveq2d 5941 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( `  ( ( M  +  1 ) ... H ) ) )  =  ( -u
1 ^ N ) )
4827, 47eqtrd 2229 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ N
) )
4948oveq1d 5940 . . . 4  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  =  ( ( -u
1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5025, 49eqtrd 2229 . . 3  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5150oveq1d 5940 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  mod  P
)  =  ( ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  mod  P ) )
525, 51eqtrd 2229 1  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    \ cdif 3154   ifcif 3562   {csn 3623   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   Fincfn 6808   CCcc 7896   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    <_ cle 8081    - cmin 8216   -ucneg 8217    / cdiv 8718   NNcn 9009   2c2 9060   4c4 9062   ZZcz 9345   ZZ>=cuz 9620   QQcq 9712   ...cfz 10102   |_cfl 10377    mod cmo 10433   ^cexp 10649  ♯chash 10886   prod_cprod 11734    || cdvds 11971   Primecprime 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-proddc 11735  df-dvds 11972  df-prm 12303
This theorem is referenced by:  gausslemma2dlem6  15394
  Copyright terms: Public domain W3C validator