ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5 Unicode version

Theorem gausslemma2dlem5 15753
Description: Lemma 5 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem5  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M, k    P, k
Allowed substitution hints:    R( x)    N( x, k)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
51, 2, 3, 4gausslemma2dlem5a 15752 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
61gausslemma2dlem0a 15736 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
76nnzd 9576 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
8 4nn 9282 . . . . . . . . . 10  |-  4  e.  NN
9 znq 9827 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
107, 8, 9sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( P  /  4
)  e.  QQ )
1110flqcld 10505 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( P  /  4 ) )  e.  ZZ )
124, 11eqeltrid 2316 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1312peano2zd 9580 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
141, 2gausslemma2dlem0b 15737 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
1514nnzd 9576 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
1613, 15fzfigd 10661 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  e.  Fin )
17 neg1cn 9223 . . . . . 6  |-  -u 1  e.  CC
1817a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  -u 1  e.  CC )
19 elfzelz 10229 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
20 2z 9482 . . . . . . . . 9  |-  2  e.  ZZ
2120a1i 9 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  ZZ )
2219, 21zmulcld 9583 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  ZZ )
2322zcnd 9578 . . . . . 6  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  CC )
2423adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  CC )
2516, 18, 24fprodmul 12110 . . . 4  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  (
prod_ k  e.  (
( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
26 fprodconst 12139 . . . . . . 7  |-  ( ( ( ( M  + 
1 ) ... H
)  e.  Fin  /\  -u 1  e.  CC )  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
2716, 17, 26sylancl 413 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
28 nnoddn2prm 12791 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
29 nnz 9473 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  ZZ )
30 oddm1d2 12411 . . . . . . . . . . . . . 14  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3129, 30syl 14 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3231biimpa 296 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( P  -  1 )  / 
2 )  e.  ZZ )
331, 28, 323syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  ZZ )
342, 33eqeltrid 2316 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ZZ )
351, 4, 2gausslemma2dlem0f 15741 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  <_  H )
36 eluz2 9736 . . . . . . . . . 10  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  ( M  +  1 )  <_  H ) )
3713, 34, 35, 36syl3anbrc 1205 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( ZZ>= `  ( M  +  1
) ) )
38 hashfz 11051 . . . . . . . . 9  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( `  (
( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  +  1 ) )  +  1 ) )
3937, 38syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  + 
1 ) )  +  1 ) )
4034zcnd 9578 . . . . . . . . . 10  |-  ( ph  ->  H  e.  CC )
4112zcnd 9578 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
42 1cnd 8170 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
4340, 41, 42nppcan2d 8491 . . . . . . . . 9  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  ( H  -  M ) )
44 gausslemma2d.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
4543, 44eqtr4di 2280 . . . . . . . 8  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  N )
4639, 45eqtrd 2262 . . . . . . 7  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  N )
4746oveq2d 6023 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( `  ( ( M  +  1 ) ... H ) ) )  =  ( -u
1 ^ N ) )
4827, 47eqtrd 2262 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ N
) )
4948oveq1d 6022 . . . 4  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  =  ( ( -u
1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5025, 49eqtrd 2262 . . 3  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5150oveq1d 6022 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  mod  P
)  =  ( ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  mod  P ) )
525, 51eqtrd 2262 1  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    \ cdif 3194   ifcif 3602   {csn 3666   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6007   Fincfn 6895   CCcc 8005   1c1 8008    + caddc 8010    x. cmul 8012    < clt 8189    <_ cle 8190    - cmin 8325   -ucneg 8326    / cdiv 8827   NNcn 9118   2c2 9169   4c4 9171   ZZcz 9454   ZZ>=cuz 9730   QQcq 9822   ...cfz 10212   |_cfl 10496    mod cmo 10552   ^cexp 10768  ♯chash 11005   prod_cprod 12069    || cdvds 12306   Primecprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-prm 12638
This theorem is referenced by:  gausslemma2dlem6  15754
  Copyright terms: Public domain W3C validator