ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5 Unicode version

Theorem gausslemma2dlem5 15593
Description: Lemma 5 for gausslemma2d 15596. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem5  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M, k    P, k
Allowed substitution hints:    R( x)    N( x, k)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
51, 2, 3, 4gausslemma2dlem5a 15592 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
61gausslemma2dlem0a 15576 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
76nnzd 9507 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
8 4nn 9213 . . . . . . . . . 10  |-  4  e.  NN
9 znq 9758 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
107, 8, 9sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( P  /  4
)  e.  QQ )
1110flqcld 10433 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( P  /  4 ) )  e.  ZZ )
124, 11eqeltrid 2293 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1312peano2zd 9511 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
141, 2gausslemma2dlem0b 15577 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
1514nnzd 9507 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
1613, 15fzfigd 10589 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  e.  Fin )
17 neg1cn 9154 . . . . . 6  |-  -u 1  e.  CC
1817a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  -u 1  e.  CC )
19 elfzelz 10160 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
20 2z 9413 . . . . . . . . 9  |-  2  e.  ZZ
2120a1i 9 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  ZZ )
2219, 21zmulcld 9514 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  ZZ )
2322zcnd 9509 . . . . . 6  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  CC )
2423adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  CC )
2516, 18, 24fprodmul 11952 . . . 4  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  (
prod_ k  e.  (
( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
26 fprodconst 11981 . . . . . . 7  |-  ( ( ( ( M  + 
1 ) ... H
)  e.  Fin  /\  -u 1  e.  CC )  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
2716, 17, 26sylancl 413 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ ( `  ( ( M  + 
1 ) ... H
) ) ) )
28 nnoddn2prm 12633 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
29 nnz 9404 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  ZZ )
30 oddm1d2 12253 . . . . . . . . . . . . . 14  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3129, 30syl 14 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3231biimpa 296 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( P  -  1 )  / 
2 )  e.  ZZ )
331, 28, 323syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  ZZ )
342, 33eqeltrid 2293 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ZZ )
351, 4, 2gausslemma2dlem0f 15581 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  <_  H )
36 eluz2 9667 . . . . . . . . . 10  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  ( M  +  1 )  <_  H ) )
3713, 34, 35, 36syl3anbrc 1184 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( ZZ>= `  ( M  +  1
) ) )
38 hashfz 10979 . . . . . . . . 9  |-  ( H  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( `  (
( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  +  1 ) )  +  1 ) )
3937, 38syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  ( ( H  -  ( M  + 
1 ) )  +  1 ) )
4034zcnd 9509 . . . . . . . . . 10  |-  ( ph  ->  H  e.  CC )
4112zcnd 9509 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
42 1cnd 8101 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
4340, 41, 42nppcan2d 8422 . . . . . . . . 9  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  ( H  -  M ) )
44 gausslemma2d.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
4543, 44eqtr4di 2257 . . . . . . . 8  |-  ( ph  ->  ( ( H  -  ( M  +  1
) )  +  1 )  =  N )
4639, 45eqtrd 2239 . . . . . . 7  |-  ( ph  ->  ( `  ( ( M  +  1 ) ... H ) )  =  N )
4746oveq2d 5970 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( `  ( ( M  +  1 ) ... H ) ) )  =  ( -u
1 ^ N ) )
4827, 47eqtrd 2239 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  =  (
-u 1 ^ N
) )
4948oveq1d 5969 . . . 4  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H )
-u 1  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  =  ( ( -u
1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5025, 49eqtrd 2239 . . 3  |-  ( ph  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  =  ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) ) )
5150oveq1d 5969 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2 ) )  mod  P
)  =  ( ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  mod  P ) )
525, 51eqtrd 2239 1  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( ( (
-u 1 ^ N
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( k  x.  2 ) )  mod 
P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    \ cdif 3165   ifcif 3573   {csn 3635   class class class wbr 4048    |-> cmpt 4110   ` cfv 5277  (class class class)co 5954   Fincfn 6837   CCcc 7936   1c1 7939    + caddc 7941    x. cmul 7943    < clt 8120    <_ cle 8121    - cmin 8256   -ucneg 8257    / cdiv 8758   NNcn 9049   2c2 9100   4c4 9102   ZZcz 9385   ZZ>=cuz 9661   QQcq 9753   ...cfz 10143   |_cfl 10424    mod cmo 10480   ^cexp 10696  ♯chash 10933   prod_cprod 11911    || cdvds 12148   Primecprime 12479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-tp 3643  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-2o 6513  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-proddc 11912  df-dvds 12149  df-prm 12480
This theorem is referenced by:  gausslemma2dlem6  15594
  Copyright terms: Public domain W3C validator