ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5a Unicode version

Theorem gausslemma2dlem5a 15729
Description: Lemma for gausslemma2dlem5 15730. (Contributed by AV, 8-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem5a  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M, k    P, k
Allowed substitution hint:    R( x)

Proof of Theorem gausslemma2dlem5a
StepHypRef Expression
1 gausslemma2d.p . . . 4  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . . 4  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . . 4  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . . 4  |-  M  =  ( |_ `  ( P  /  4 ) )
51, 2, 3, 4gausslemma2dlem3 15727 . . 3  |-  ( ph  ->  A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  =  ( P  -  ( k  x.  2 ) ) )
6 prodeq2 12054 . . . 4  |-  ( A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k )  =  ( P  -  ( k  x.  2 ) )  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `
 k )  = 
prod_ k  e.  (
( M  +  1 ) ... H ) ( P  -  (
k  x.  2 ) ) )
76oveq1d 6009 . . 3  |-  ( A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k )  =  ( P  -  ( k  x.  2 ) )  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k )  mod  P )  =  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( P  -  (
k  x.  2 ) )  mod  P ) )
85, 7syl 14 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( P  -  ( k  x.  2 ) )  mod  P
) )
91eldifad 3208 . . . . . . . . 9  |-  ( ph  ->  P  e.  Prime )
10 prmz 12619 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
119, 10syl 14 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
12 4nn 9262 . . . . . . . 8  |-  4  e.  NN
13 znq 9807 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
1411, 12, 13sylancl 413 . . . . . . 7  |-  ( ph  ->  ( P  /  4
)  e.  QQ )
1514flqcld 10484 . . . . . 6  |-  ( ph  ->  ( |_ `  ( P  /  4 ) )  e.  ZZ )
164, 15eqeltrid 2316 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
1716peano2zd 9560 . . . 4  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
181, 2gausslemma2dlem0b 15714 . . . . 5  |-  ( ph  ->  H  e.  NN )
1918nnzd 9556 . . . 4  |-  ( ph  ->  H  e.  ZZ )
2017, 19fzfigd 10640 . . 3  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  e.  Fin )
2110adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  P  e.  ZZ )
22 elfzelz 10209 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
23 2z 9462 . . . . . . . 8  |-  2  e.  ZZ
2423a1i 9 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  ZZ )
2522, 24zmulcld 9563 . . . . . 6  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  ZZ )
2625adantl 277 . . . . 5  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  ZZ )
2721, 26zsubcld 9562 . . . 4  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( P  -  ( k  x.  2 ) )  e.  ZZ )
289, 27sylan 283 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( P  -  ( k  x.  2 ) )  e.  ZZ )
29 neg1z 9466 . . . . . 6  |-  -u 1  e.  ZZ
3029a1i 9 . . . . 5  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  -u 1  e.  ZZ )
3130, 25zmulcld 9563 . . . 4  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  ( -u 1  x.  ( k  x.  2 ) )  e.  ZZ )
3231adantl 277 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( -u 1  x.  ( k  x.  2 ) )  e.  ZZ )
33 prmnn 12618 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
349, 33syl 14 . . 3  |-  ( ph  ->  P  e.  NN )
3525zcnd 9558 . . . . . . . 8  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  CC )
3635mulm1d 8544 . . . . . . 7  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  ( -u 1  x.  ( k  x.  2 ) )  =  -u ( k  x.  2 ) )
3736adantl 277 . . . . . 6  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( -u 1  x.  ( k  x.  2 ) )  =  -u ( k  x.  2 ) )
3837oveq1d 6009 . . . . 5  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
( -u 1  x.  (
k  x.  2 ) )  mod  P )  =  ( -u (
k  x.  2 )  mod  P ) )
39 zq 9809 . . . . . . 7  |-  ( ( k  x.  2 )  e.  ZZ  ->  (
k  x.  2 )  e.  QQ )
4026, 39syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  QQ )
41 zq 9809 . . . . . . 7  |-  ( P  e.  ZZ  ->  P  e.  QQ )
4221, 41syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  P  e.  QQ )
4333nngt0d 9142 . . . . . . 7  |-  ( P  e.  Prime  ->  0  < 
P )
4443adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  0  <  P )
45 qnegmod 10578 . . . . . 6  |-  ( ( ( k  x.  2 )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  ( -u ( k  x.  2 )  mod  P )  =  ( ( P  -  ( k  x.  2 ) )  mod 
P ) )
4640, 42, 44, 45syl3anc 1271 . . . . 5  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( -u ( k  x.  2 )  mod  P )  =  ( ( P  -  ( k  x.  2 ) )  mod 
P ) )
4738, 46eqtr2d 2263 . . . 4  |-  ( ( P  e.  Prime  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
( P  -  (
k  x.  2 ) )  mod  P )  =  ( ( -u
1  x.  ( k  x.  2 ) )  mod  P ) )
489, 47sylan 283 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
( P  -  (
k  x.  2 ) )  mod  P )  =  ( ( -u
1  x.  ( k  x.  2 ) )  mod  P ) )
4920, 28, 32, 34, 48fprodmodd 12138 . 2  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( P  -  (
k  x.  2 ) )  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
508, 49eqtrd 2262 1  |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  mod  P )  =  ( prod_ k  e.  ( ( M  + 
1 ) ... H
) ( -u 1  x.  ( k  x.  2 ) )  mod  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    \ cdif 3194   ifcif 3602   {csn 3666   class class class wbr 4082    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    < clt 8169    - cmin 8305   -ucneg 8306    / cdiv 8807   NNcn 9098   2c2 9149   4c4 9151   ZZcz 9434   QQcq 9802   ...cfz 10192   |_cfl 10475    mod cmo 10531   prod_cprod 12047   Primecprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048  df-dvds 12285  df-prm 12616
This theorem is referenced by:  gausslemma2dlem5  15730
  Copyright terms: Public domain W3C validator