ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5 GIF version

Theorem gausslemma2dlem5 15730
Description: Lemma 5 for gausslemma2d 15733. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥,𝑘)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem5a 15729 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
61gausslemma2dlem0a 15713 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
76nnzd 9556 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
8 4nn 9262 . . . . . . . . . 10 4 ∈ ℕ
9 znq 9807 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑃 / 4) ∈ ℚ)
107, 8, 9sylancl 413 . . . . . . . . 9 (𝜑 → (𝑃 / 4) ∈ ℚ)
1110flqcld 10484 . . . . . . . 8 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℤ)
124, 11eqeltrid 2316 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1312peano2zd 9560 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
141, 2gausslemma2dlem0b 15714 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
1514nnzd 9556 . . . . . 6 (𝜑𝐻 ∈ ℤ)
1613, 15fzfigd 10640 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
17 neg1cn 9203 . . . . . 6 -1 ∈ ℂ
1817a1i 9 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → -1 ∈ ℂ)
19 elfzelz 10209 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
20 2z 9462 . . . . . . . . 9 2 ∈ ℤ
2120a1i 9 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
2219, 21zmulcld 9563 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
2322zcnd 9558 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
2423adantl 277 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℂ)
2516, 18, 24fprodmul 12088 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
26 fprodconst 12117 . . . . . . 7 ((((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
2716, 17, 26sylancl 413 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
28 nnoddn2prm 12769 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
29 nnz 9453 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
30 oddm1d2 12389 . . . . . . . . . . . . . 14 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3129, 30syl 14 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3231biimpa 296 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
331, 28, 323syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
342, 33eqeltrid 2316 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
351, 4, 2gausslemma2dlem0f 15718 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ≤ 𝐻)
36 eluz2 9716 . . . . . . . . . 10 (𝐻 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐻))
3713, 34, 35, 36syl3anbrc 1205 . . . . . . . . 9 (𝜑𝐻 ∈ (ℤ‘(𝑀 + 1)))
38 hashfz 11030 . . . . . . . . 9 (𝐻 ∈ (ℤ‘(𝑀 + 1)) → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
3937, 38syl 14 . . . . . . . 8 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4034zcnd 9558 . . . . . . . . . 10 (𝜑𝐻 ∈ ℂ)
4112zcnd 9558 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
42 1cnd 8150 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
4340, 41, 42nppcan2d 8471 . . . . . . . . 9 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = (𝐻𝑀))
44 gausslemma2d.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
4543, 44eqtr4di 2280 . . . . . . . 8 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = 𝑁)
4639, 45eqtrd 2262 . . . . . . 7 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = 𝑁)
4746oveq2d 6010 . . . . . 6 (𝜑 → (-1↑(♯‘((𝑀 + 1)...𝐻))) = (-1↑𝑁))
4827, 47eqtrd 2262 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑𝑁))
4948oveq1d 6009 . . . 4 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5025, 49eqtrd 2262 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5150oveq1d 6009 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
525, 51eqtrd 2262 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cdif 3194  ifcif 3602  {csn 3666   class class class wbr 4082  cmpt 4144  cfv 5314  (class class class)co 5994  Fincfn 6877  cc 7985  1c1 7988   + caddc 7990   · cmul 7992   < clt 8169  cle 8170  cmin 8305  -cneg 8306   / cdiv 8807  cn 9098  2c2 9149  4c4 9151  cz 9434  cuz 9710  cq 9802  ...cfz 10192  cfl 10475   mod cmo 10531  cexp 10747  chash 10984  cprod 12047  cdvds 12284  cprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048  df-dvds 12285  df-prm 12616
This theorem is referenced by:  gausslemma2dlem6  15731
  Copyright terms: Public domain W3C validator