Proof of Theorem gausslemma2dlem5
| Step | Hyp | Ref
| Expression |
| 1 | | gausslemma2d.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 2 | | gausslemma2d.h |
. . 3
⊢ 𝐻 = ((𝑃 − 1) / 2) |
| 3 | | gausslemma2d.r |
. . 3
⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| 4 | | gausslemma2d.m |
. . 3
⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| 5 | 1, 2, 3, 4 | gausslemma2dlem5a 15316 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
| 6 | 1 | gausslemma2dlem0a 15300 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 7 | 6 | nnzd 9449 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 8 | | 4nn 9156 |
. . . . . . . . . 10
⊢ 4 ∈
ℕ |
| 9 | | znq 9700 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ 4 ∈
ℕ) → (𝑃 / 4)
∈ ℚ) |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 / 4) ∈ ℚ) |
| 11 | 10 | flqcld 10369 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈
ℤ) |
| 12 | 4, 11 | eqeltrid 2283 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 13 | 12 | peano2zd 9453 |
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 14 | 1, 2 | gausslemma2dlem0b 15301 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 15 | 14 | nnzd 9449 |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ ℤ) |
| 16 | 13, 15 | fzfigd 10525 |
. . . . 5
⊢ (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin) |
| 17 | | neg1cn 9097 |
. . . . . 6
⊢ -1 ∈
ℂ |
| 18 | 17 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → -1 ∈
ℂ) |
| 19 | | elfzelz 10102 |
. . . . . . . 8
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) |
| 20 | | 2z 9356 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 21 | 20 | a1i 9 |
. . . . . . . 8
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) |
| 22 | 19, 21 | zmulcld 9456 |
. . . . . . 7
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) |
| 23 | 22 | zcnd 9451 |
. . . . . 6
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ) |
| 24 | 23 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℂ) |
| 25 | 16, 18, 24 | fprodmul 11758 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) |
| 26 | | fprodconst 11787 |
. . . . . . 7
⊢ ((((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ) →
∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻)))) |
| 27 | 16, 17, 26 | sylancl 413 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻)))) |
| 28 | | nnoddn2prm 12439 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℕ
∧ ¬ 2 ∥ 𝑃)) |
| 29 | | nnz 9347 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
| 30 | | oddm1d2 12059 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℤ → (¬ 2
∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈
ℤ)) |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → (¬ 2
∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈
ℤ)) |
| 32 | 31 | biimpa 296 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → ((𝑃 − 1) / 2) ∈
ℤ) |
| 33 | 1, 28, 32 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℤ) |
| 34 | 2, 33 | eqeltrid 2283 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ ℤ) |
| 35 | 1, 4, 2 | gausslemma2dlem0f 15305 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
| 36 | | eluz2 9609 |
. . . . . . . . . 10
⊢ (𝐻 ∈
(ℤ≥‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐻)) |
| 37 | 13, 34, 35, 36 | syl3anbrc 1183 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ (ℤ≥‘(𝑀 + 1))) |
| 38 | | hashfz 10915 |
. . . . . . . . 9
⊢ (𝐻 ∈
(ℤ≥‘(𝑀 + 1)) → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1)) |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1)) |
| 40 | 34 | zcnd 9451 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ ℂ) |
| 41 | 12 | zcnd 9451 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 42 | | 1cnd 8044 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
| 43 | 40, 41, 42 | nppcan2d 8365 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = (𝐻 − 𝑀)) |
| 44 | | gausslemma2d.n |
. . . . . . . . 9
⊢ 𝑁 = (𝐻 − 𝑀) |
| 45 | 43, 44 | eqtr4di 2247 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = 𝑁) |
| 46 | 39, 45 | eqtrd 2229 |
. . . . . . 7
⊢ (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = 𝑁) |
| 47 | 46 | oveq2d 5939 |
. . . . . 6
⊢ (𝜑 →
(-1↑(♯‘((𝑀
+ 1)...𝐻))) =
(-1↑𝑁)) |
| 48 | 27, 47 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑𝑁)) |
| 49 | 48 | oveq1d 5938 |
. . . 4
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) |
| 50 | 25, 49 | eqtrd 2229 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) |
| 51 | 50 | oveq1d 5938 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) |
| 52 | 5, 51 | eqtrd 2229 |
1
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) |