ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5 GIF version

Theorem gausslemma2dlem5 15274
Description: Lemma 5 for gausslemma2d 15277. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥,𝑘)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem5a 15273 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
61gausslemma2dlem0a 15257 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
76nnzd 9444 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
8 4nn 9151 . . . . . . . . . 10 4 ∈ ℕ
9 znq 9695 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑃 / 4) ∈ ℚ)
107, 8, 9sylancl 413 . . . . . . . . 9 (𝜑 → (𝑃 / 4) ∈ ℚ)
1110flqcld 10352 . . . . . . . 8 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℤ)
124, 11eqeltrid 2283 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1312peano2zd 9448 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
141, 2gausslemma2dlem0b 15258 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
1514nnzd 9444 . . . . . 6 (𝜑𝐻 ∈ ℤ)
1613, 15fzfigd 10508 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
17 neg1cn 9092 . . . . . 6 -1 ∈ ℂ
1817a1i 9 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → -1 ∈ ℂ)
19 elfzelz 10097 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
20 2z 9351 . . . . . . . . 9 2 ∈ ℤ
2120a1i 9 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
2219, 21zmulcld 9451 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
2322zcnd 9446 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
2423adantl 277 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℂ)
2516, 18, 24fprodmul 11740 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
26 fprodconst 11769 . . . . . . 7 ((((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
2716, 17, 26sylancl 413 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(♯‘((𝑀 + 1)...𝐻))))
28 nnoddn2prm 12405 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
29 nnz 9342 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
30 oddm1d2 12039 . . . . . . . . . . . . . 14 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3129, 30syl 14 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3231biimpa 296 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
331, 28, 323syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
342, 33eqeltrid 2283 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
351, 4, 2gausslemma2dlem0f 15262 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ≤ 𝐻)
36 eluz2 9604 . . . . . . . . . 10 (𝐻 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐻))
3713, 34, 35, 36syl3anbrc 1183 . . . . . . . . 9 (𝜑𝐻 ∈ (ℤ‘(𝑀 + 1)))
38 hashfz 10898 . . . . . . . . 9 (𝐻 ∈ (ℤ‘(𝑀 + 1)) → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
3937, 38syl 14 . . . . . . . 8 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4034zcnd 9446 . . . . . . . . . 10 (𝜑𝐻 ∈ ℂ)
4112zcnd 9446 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
42 1cnd 8040 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
4340, 41, 42nppcan2d 8361 . . . . . . . . 9 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = (𝐻𝑀))
44 gausslemma2d.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
4543, 44eqtr4di 2247 . . . . . . . 8 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = 𝑁)
4639, 45eqtrd 2229 . . . . . . 7 (𝜑 → (♯‘((𝑀 + 1)...𝐻)) = 𝑁)
4746oveq2d 5938 . . . . . 6 (𝜑 → (-1↑(♯‘((𝑀 + 1)...𝐻))) = (-1↑𝑁))
4827, 47eqtrd 2229 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑𝑁))
4948oveq1d 5937 . . . 4 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5025, 49eqtrd 2229 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5150oveq1d 5937 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
525, 51eqtrd 2229 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cdif 3154  ifcif 3561  {csn 3622   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7875  1c1 7878   + caddc 7880   · cmul 7882   < clt 8059  cle 8060  cmin 8195  -cneg 8196   / cdiv 8696  cn 8987  2c2 9038  4c4 9040  cz 9323  cuz 9598  cq 9690  ...cfz 10080  cfl 10343   mod cmo 10399  cexp 10615  chash 10852  cprod 11699  cdvds 11936  cprime 12251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-ihash 10853  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-clim 11428  df-proddc 11700  df-dvds 11937  df-prm 12252
This theorem is referenced by:  gausslemma2dlem6  15275
  Copyright terms: Public domain W3C validator