ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzreidx GIF version

Theorem gsumfzreidx 13743
Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with 𝑀 = 1. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumreidx.b 𝐵 = (Base‘𝐺)
gsumreidx.z 0 = (0g𝐺)
gsumreidx.g (𝜑𝐺 ∈ CMnd)
gsumfzreidx.m (𝜑𝑀 ∈ ℤ)
gsumfzreidx.n (𝜑𝑁 ∈ ℤ)
gsumreidx.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
gsumreidx.h (𝜑𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Assertion
Ref Expression
gsumfzreidx (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))

Proof of Theorem gsumfzreidx
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
21iftrued 3582 . . 3 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = 0 )
3 gsumreidx.b . . . . 5 𝐵 = (Base‘𝐺)
4 gsumreidx.z . . . . 5 0 = (0g𝐺)
5 eqid 2206 . . . . 5 (+g𝐺) = (+g𝐺)
6 gsumreidx.g . . . . 5 (𝜑𝐺 ∈ CMnd)
7 gsumfzreidx.m . . . . 5 (𝜑𝑀 ∈ ℤ)
8 gsumfzreidx.n . . . . 5 (𝜑𝑁 ∈ ℤ)
9 gsumreidx.f . . . . 5 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
103, 4, 5, 6, 7, 8, 9gsumfzval 13293 . . . 4 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
1110adantr 276 . . 3 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
12 gsumreidx.h . . . . . . . 8 (𝜑𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
13 f1of 5533 . . . . . . . 8 (𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐻:(𝑀...𝑁)⟶(𝑀...𝑁))
1412, 13syl 14 . . . . . . 7 (𝜑𝐻:(𝑀...𝑁)⟶(𝑀...𝑁))
15 fco 5450 . . . . . . 7 ((𝐹:(𝑀...𝑁)⟶𝐵𝐻:(𝑀...𝑁)⟶(𝑀...𝑁)) → (𝐹𝐻):(𝑀...𝑁)⟶𝐵)
169, 14, 15syl2anc 411 . . . . . 6 (𝜑 → (𝐹𝐻):(𝑀...𝑁)⟶𝐵)
173, 4, 5, 6, 7, 8, 16gsumfzval 13293 . . . . 5 (𝜑 → (𝐺 Σg (𝐹𝐻)) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁)))
1817adantr 276 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐺 Σg (𝐹𝐻)) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁)))
191iftrued 3582 . . . 4 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁)) = 0 )
2018, 19eqtrd 2239 . . 3 ((𝜑𝑁 < 𝑀) → (𝐺 Σg (𝐹𝐻)) = 0 )
212, 11, 203eqtr4d 2249 . 2 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
226cmnmndd 13714 . . . . . 6 (𝜑𝐺 ∈ Mnd)
2322ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
24 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
25 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
263, 5mndcl 13325 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2723, 24, 25, 26syl3anc 1250 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
286ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ CMnd)
293, 5cmncom 13708 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3028, 24, 25, 29syl3anc 1250 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3122ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐺 ∈ Mnd)
323, 5mndass 13326 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
3331, 32sylancom 420 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
347adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
358adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
3634zred 9510 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
3735zred 9510 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
38 simpr 110 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
3936, 37, 38nltled 8208 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
40 eluz2 9669 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4134, 35, 39, 40syl3anbrc 1184 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
42 ssidd 3218 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐵𝐵)
43 plusgslid 13014 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4443slotex 12929 . . . . . 6 (𝐺 ∈ CMnd → (+g𝐺) ∈ V)
456, 44syl 14 . . . . 5 (𝜑 → (+g𝐺) ∈ V)
4645adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐺) ∈ V)
4712adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
48 f1ocnv 5546 . . . . 5 (𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4947, 48syl 14 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5016adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐹𝐻):(𝑀...𝑁)⟶𝐵)
5150ffvelcdmda 5727 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝐻)‘𝑥) ∈ 𝐵)
5214ad2antrr 488 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐻:(𝑀...𝑁)⟶(𝑀...𝑁))
5312, 48syl 14 . . . . . . . . 9 (𝜑𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
54 f1of 5533 . . . . . . . . 9 (𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐻:(𝑀...𝑁)⟶(𝑀...𝑁))
5553, 54syl 14 . . . . . . . 8 (𝜑𝐻:(𝑀...𝑁)⟶(𝑀...𝑁))
5655adantr 276 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻:(𝑀...𝑁)⟶(𝑀...𝑁))
5756ffvelcdmda 5727 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) ∈ (𝑀...𝑁))
58 fvco3 5662 . . . . . 6 ((𝐻:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝐻𝑘) ∈ (𝑀...𝑁)) → ((𝐹𝐻)‘(𝐻𝑘)) = (𝐹‘(𝐻‘(𝐻𝑘))))
5952, 57, 58syl2anc 411 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝐻)‘(𝐻𝑘)) = (𝐹‘(𝐻‘(𝐻𝑘))))
60 f1ocnvfv2 5859 . . . . . . 7 ((𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘(𝐻𝑘)) = 𝑘)
6147, 60sylan 283 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘(𝐻𝑘)) = 𝑘)
6261fveq2d 5592 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘(𝐻‘(𝐻𝑘))) = (𝐹𝑘))
6359, 62eqtr2d 2240 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = ((𝐹𝐻)‘(𝐻𝑘)))
647, 8fzfigd 10593 . . . . . . 7 (𝜑 → (𝑀...𝑁) ∈ Fin)
659, 64fexd 5826 . . . . . 6 (𝜑𝐹 ∈ V)
6614, 64fexd 5826 . . . . . 6 (𝜑𝐻 ∈ V)
67 coexg 5235 . . . . . 6 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (𝐹𝐻) ∈ V)
6865, 66, 67syl2anc 411 . . . . 5 (𝜑 → (𝐹𝐻) ∈ V)
6968adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐹𝐻) ∈ V)
709adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹:(𝑀...𝑁)⟶𝐵)
7164adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝑀...𝑁) ∈ Fin)
7270, 71fexd 5826 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V)
7327, 30, 33, 41, 42, 46, 49, 51, 63, 69, 72seqf1og 10683 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (seq𝑀((+g𝐺), 𝐹)‘𝑁) = (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁))
7410adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7538iffalsed 3585 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7674, 75eqtrd 2239 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7717adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝐹𝐻)) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁)))
7838iffalsed 3585 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁)) = (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁))
7977, 78eqtrd 2239 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝐹𝐻)) = (seq𝑀((+g𝐺), (𝐹𝐻))‘𝑁))
8073, 76, 793eqtr4d 2249 . 2 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
81 zdclt 9465 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
828, 7, 81syl2anc 411 . . 3 (𝜑DECID 𝑁 < 𝑀)
83 exmiddc 838 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8482, 83syl 14 . 2 (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8521, 80, 84mpjaodan 800 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  ifcif 3575   class class class wbr 4050  ccnv 4681  ccom 4686  wf 5275  1-1-ontowf1o 5278  cfv 5279  (class class class)co 5956  Fincfn 6839   < clt 8122  cle 8123  cz 9387  cuz 9663  ...cfz 10145  seqcseq 10609  Basecbs 12902  +gcplusg 12979  0gc0g 13158   Σg cgsu 13159  Mndcmnd 13318  CMndccmn 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-igsum 13161  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-cmn 13692
This theorem is referenced by:  lgseisenlem3  15619
  Copyright terms: Public domain W3C validator