![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abscl | GIF version |
Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
abscl | โข (๐ด โ โ โ (absโ๐ด) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absval 11012 | . 2 โข (๐ด โ โ โ (absโ๐ด) = (โโ(๐ด ยท (โโ๐ด)))) | |
2 | cjmulrcl 10898 | . . 3 โข (๐ด โ โ โ (๐ด ยท (โโ๐ด)) โ โ) | |
3 | cjmulge0 10900 | . . 3 โข (๐ด โ โ โ 0 โค (๐ด ยท (โโ๐ด))) | |
4 | resqrtcl 11040 | . . 3 โข (((๐ด ยท (โโ๐ด)) โ โ โง 0 โค (๐ด ยท (โโ๐ด))) โ (โโ(๐ด ยท (โโ๐ด))) โ โ) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 โข (๐ด โ โ โ (โโ(๐ด ยท (โโ๐ด))) โ โ) |
6 | 1, 5 | eqeltrd 2254 | 1 โข (๐ด โ โ โ (absโ๐ด) โ โ) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โ wcel 2148 class class class wbr 4005 โcfv 5218 (class class class)co 5877 โcc 7811 โcr 7812 0cc0 7813 ยท cmul 7818 โค cle 7995 โccj 10850 โcsqrt 11007 abscabs 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 |
This theorem is referenced by: abs00 11075 absreim 11079 absdivap 11081 leabs 11085 absexp 11090 absexpzap 11091 sqabs 11093 absimle 11095 ltabs 11098 abslt 11099 absle 11100 abssubap0 11101 lenegsq 11106 releabs 11107 recvalap 11108 absidm 11109 absgt0ap 11110 abstri 11115 abs2dif 11117 abs2difabs 11119 absf 11121 abs3lem 11122 caubnd2 11128 abscli 11153 abscld 11192 mulcn2 11322 efcllemp 11668 efcllem 11669 cnbl0 14073 cnblcld 14074 dveflem 14226 lgslem3 14442 |
Copyright terms: Public domain | W3C validator |