| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0zd | GIF version | ||
| Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| 0zd | ⊢ (𝜑 → 0 ∈ ℤ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0z 9337 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℤ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 0cc0 7879 ℤcz 9326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 | 
| This theorem is referenced by: fzctr 10208 fzosubel3 10272 frecfzennn 10518 frechashgf1o 10520 0tonninf 10532 1tonninf 10533 exp3val 10633 exp0 10635 bcval 10841 bccmpl 10846 bcval5 10855 bcpasc 10858 bccl 10859 hashcl 10873 hashfiv01gt1 10874 hashfz1 10875 hashen 10876 fihashneq0 10886 omgadd 10894 fihashdom 10895 fiubz 10921 fnfz0hash 10924 ffzo0hash 10926 wrdval 10938 snopiswrd 10945 wrdsymb0 10967 fzomaxdiflem 11277 fsumzcl 11567 fisum0diag 11606 fisum0diag2 11612 binomlem 11648 binom1dif 11652 isumnn0nn 11658 expcnvre 11668 explecnv 11670 pwm1geoserap1 11673 geolim 11676 geolim2 11677 geo2sum 11679 geoisum 11682 geoisumr 11683 mertenslemub 11699 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 fprod0diagfz 11793 eftcl 11819 efval 11826 eff 11828 efcvg 11831 efcvgfsum 11832 reefcl 11833 ege2le3 11836 efcj 11838 efaddlem 11839 eftlub 11855 effsumlt 11857 efgt1p2 11860 efgt1p 11861 eflegeo 11866 eirraplem 11942 dvdsmodexp 11960 dvdsmod 12027 3dvds 12029 bitsfzolem 12118 gcdn0gt0 12145 gcdaddm 12151 gcdmultipled 12160 bezoutlemle 12175 nninfctlemfo 12207 nn0seqcvgd 12209 alginv 12215 algcvg 12216 algcvga 12219 algfx 12220 eucalgval2 12221 eucalgcvga 12226 eucalg 12227 lcmcllem 12235 lcmid 12248 mulgcddvds 12262 divgcdcoprmex 12270 cncongr1 12271 cncongr2 12272 phiprmpw 12390 modprm0 12423 pcpremul 12462 pceu 12464 pcmul 12470 pcqmul 12472 pcge0 12482 pcdvdsb 12489 pcneg 12494 pcgcd1 12497 pc2dvds 12499 pcz 12501 dvdsprmpweqle 12506 qexpz 12521 4sqlemafi 12564 4sqlem11 12570 ennnfonelemjn 12619 ennnfonelemh 12621 ennnfonelem0 12622 ennnfonelem1 12624 ennnfonelemom 12625 ennnfonelemkh 12629 ennnfonelemhf1o 12630 ennnfonelemex 12631 ennnfonelemrn 12636 ennnfonelemnn0 12639 ctinfomlemom 12644 mulgval 13252 mulgfng 13254 subgmulg 13318 elply2 14971 plyf 14973 elplyd 14977 ply1termlem 14978 plyaddlem1 14983 plymullem1 14984 plymullem 14986 plycoeid3 14993 plycolemc 14994 plycjlemc 14996 plycn 14998 plyrecj 14999 dvply1 15001 sgmppw 15228 0sgmppw 15229 mersenne 15233 lgsval 15245 lgsfvalg 15246 lgscllem 15248 lgsval2lem 15251 lgsneg1 15266 lgsne0 15279 lgsquad3 15325 012of 15640 2o01f 15641 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |