![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0zd | GIF version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd | ⊢ (𝜑 → 0 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9331 | . 2 ⊢ 0 ∈ ℤ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 0cc0 7874 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-neg 8195 df-z 9321 |
This theorem is referenced by: fzctr 10202 fzosubel3 10266 frecfzennn 10500 frechashgf1o 10502 0tonninf 10514 1tonninf 10515 exp3val 10615 exp0 10617 bcval 10823 bccmpl 10828 bcval5 10837 bcpasc 10840 bccl 10841 hashcl 10855 hashfiv01gt1 10856 hashfz1 10857 hashen 10858 fihashneq0 10868 omgadd 10876 fihashdom 10877 fiubz 10903 fnfz0hash 10906 ffzo0hash 10908 wrdval 10920 snopiswrd 10927 wrdsymb0 10949 fzomaxdiflem 11259 fsumzcl 11548 fisum0diag 11587 fisum0diag2 11593 binomlem 11629 binom1dif 11633 isumnn0nn 11639 expcnvre 11649 explecnv 11651 pwm1geoserap1 11654 geolim 11657 geolim2 11658 geo2sum 11660 geoisum 11663 geoisumr 11664 mertenslemub 11680 mertenslemi1 11681 mertenslem2 11682 mertensabs 11683 fprod0diagfz 11774 eftcl 11800 efval 11807 eff 11809 efcvg 11812 efcvgfsum 11813 reefcl 11814 ege2le3 11817 efcj 11819 efaddlem 11820 eftlub 11836 effsumlt 11838 efgt1p2 11841 efgt1p 11842 eflegeo 11847 eirraplem 11923 dvdsmodexp 11941 dvdsmod 12007 gcdn0gt0 12118 gcdaddm 12124 gcdmultipled 12133 bezoutlemle 12148 nninfctlemfo 12180 nn0seqcvgd 12182 alginv 12188 algcvg 12189 algcvga 12192 algfx 12193 eucalgval2 12194 eucalgcvga 12199 eucalg 12200 lcmcllem 12208 lcmid 12221 mulgcddvds 12235 divgcdcoprmex 12243 cncongr1 12244 cncongr2 12245 phiprmpw 12363 modprm0 12395 pcpremul 12434 pceu 12436 pcmul 12442 pcqmul 12444 pcge0 12454 pcdvdsb 12461 pcneg 12466 pcgcd1 12469 pc2dvds 12471 pcz 12473 dvdsprmpweqle 12478 qexpz 12493 4sqlemafi 12536 4sqlem11 12542 ennnfonelemjn 12562 ennnfonelemh 12564 ennnfonelem0 12565 ennnfonelem1 12567 ennnfonelemom 12568 ennnfonelemkh 12572 ennnfonelemhf1o 12573 ennnfonelemex 12574 ennnfonelemrn 12579 ennnfonelemnn0 12582 ctinfomlemom 12587 mulgval 13195 mulgfng 13197 subgmulg 13261 elply2 14914 plyf 14916 elplyd 14920 ply1termlem 14921 plyaddlem1 14926 plymullem1 14927 plymullem 14929 plycolemc 14936 plycjlemc 14938 plycn 14940 plyrecj 14941 dvply1 14943 lgsval 15161 lgsfvalg 15162 lgscllem 15164 lgsval2lem 15167 lgsneg1 15182 lgsne0 15195 lgsquad3 15241 012of 15556 2o01f 15557 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |