| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0zd | GIF version | ||
| Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0zd | ⊢ (𝜑 → 0 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9354 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 0cc0 7896 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 |
| This theorem is referenced by: fzctr 10225 fzosubel3 10289 frecfzennn 10535 frechashgf1o 10537 0tonninf 10549 1tonninf 10550 exp3val 10650 exp0 10652 bcval 10858 bccmpl 10863 bcval5 10872 bcpasc 10875 bccl 10876 hashcl 10890 hashfiv01gt1 10891 hashfz1 10892 hashen 10893 fihashneq0 10903 omgadd 10911 fihashdom 10912 fiubz 10938 fnfz0hash 10941 ffzo0hash 10943 wrdval 10955 snopiswrd 10962 wrdsymb0 10984 fzomaxdiflem 11294 fsumzcl 11584 fisum0diag 11623 fisum0diag2 11629 binomlem 11665 binom1dif 11669 isumnn0nn 11675 expcnvre 11685 explecnv 11687 pwm1geoserap1 11690 geolim 11693 geolim2 11694 geo2sum 11696 geoisum 11699 geoisumr 11700 mertenslemub 11716 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 fprod0diagfz 11810 eftcl 11836 efval 11843 eff 11845 efcvg 11848 efcvgfsum 11849 reefcl 11850 ege2le3 11853 efcj 11855 efaddlem 11856 eftlub 11872 effsumlt 11874 efgt1p2 11877 efgt1p 11878 eflegeo 11883 eirraplem 11959 dvdsmodexp 11977 dvdsmod 12044 3dvds 12046 bitsfzolem 12136 bitsfi 12139 bitsinv1lem 12143 bitsinv1 12144 gcdn0gt0 12170 gcdaddm 12176 gcdmultipled 12185 bezoutlemle 12200 nninfctlemfo 12232 nn0seqcvgd 12234 alginv 12240 algcvg 12241 algcvga 12244 algfx 12245 eucalgval2 12246 eucalgcvga 12251 eucalg 12252 lcmcllem 12260 lcmid 12273 mulgcddvds 12287 divgcdcoprmex 12295 cncongr1 12296 cncongr2 12297 phiprmpw 12415 modprm0 12448 pcpremul 12487 pceu 12489 pcmul 12495 pcqmul 12497 pcge0 12507 pcdvdsb 12514 pcneg 12519 pcgcd1 12522 pc2dvds 12524 pcz 12526 dvdsprmpweqle 12531 qexpz 12546 4sqlemafi 12589 4sqlem11 12595 ennnfonelemjn 12644 ennnfonelemh 12646 ennnfonelem0 12647 ennnfonelem1 12649 ennnfonelemom 12650 ennnfonelemkh 12654 ennnfonelemhf1o 12655 ennnfonelemex 12656 ennnfonelemrn 12661 ennnfonelemnn0 12664 ctinfomlemom 12669 mulgval 13328 mulgfng 13330 subgmulg 13394 elply2 15055 plyf 15057 elplyd 15061 ply1termlem 15062 plyaddlem1 15067 plymullem1 15068 plymullem 15070 plycoeid3 15077 plycolemc 15078 plycjlemc 15080 plycn 15082 plyrecj 15083 dvply1 15085 sgmppw 15312 0sgmppw 15313 mersenne 15317 lgsval 15329 lgsfvalg 15330 lgscllem 15332 lgsval2lem 15335 lgsneg1 15350 lgsne0 15363 lgsquad3 15409 012of 15724 2o01f 15725 isomninnlem 15761 iswomninnlem 15780 ismkvnnlem 15783 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |