![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0zd | GIF version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd | ⊢ (𝜑 → 0 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 8859 | . 2 ⊢ 0 ∈ ℤ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 0cc0 7447 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-1re 7536 ax-addrcl 7539 ax-rnegex 7551 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-iota 5014 df-fv 5057 df-ov 5693 df-neg 7753 df-z 8849 |
This theorem is referenced by: fzctr 9693 fzosubel3 9756 frecfzennn 9982 frechashgf1o 9984 0tonninf 9994 1tonninf 9995 exp3val 10088 exp0 10090 bcval 10288 bccmpl 10293 bcval5 10302 bcpasc 10305 bccl 10306 hashcl 10320 hashfiv01gt1 10321 hashfz1 10322 hashen 10323 fihashneq0 10334 omgadd 10341 fihashdom 10342 fnfz0hash 10368 ffzo0hash 10370 fzomaxdiflem 10676 fsumzcl 10960 fisum0diag 10999 fisum0diag2 11005 binomlem 11041 binom1dif 11045 isumnn0nn 11051 expcnvre 11061 explecnv 11063 pwm1geoserap1 11066 geolim 11069 geolim2 11070 geo2sum 11072 geoisum 11075 geoisumr 11076 mertenslemub 11092 mertenslemi1 11093 mertenslem2 11094 mertensabs 11095 eftcl 11108 efval 11115 eff 11117 efcvg 11120 efcvgfsum 11121 reefcl 11122 ege2le3 11125 efcj 11127 efaddlem 11128 eftlub 11144 effsumlt 11146 efgt1p2 11149 efgt1p 11150 eflegeo 11156 eirraplem 11228 dvdsmod 11305 gcdn0gt0 11411 gcdaddm 11417 bezoutlemle 11439 nn0seqcvgd 11465 alginv 11471 algcvg 11472 algcvga 11475 algfx 11476 eucalgval2 11477 eucalgcvga 11482 eucalg 11483 lcmcllem 11491 lcmid 11504 mulgcddvds 11518 divgcdcoprmex 11526 cncongr1 11527 cncongr2 11528 phiprmpw 11640 |
Copyright terms: Public domain | W3C validator |