| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0zd | GIF version | ||
| Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0zd | ⊢ (𝜑 → 0 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9356 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 0cc0 7898 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 |
| This theorem is referenced by: fzctr 10227 fzosubel3 10291 frecfzennn 10537 frechashgf1o 10539 0tonninf 10551 1tonninf 10552 exp3val 10652 exp0 10654 bcval 10860 bccmpl 10865 bcval5 10874 bcpasc 10877 bccl 10878 hashcl 10892 hashfiv01gt1 10893 hashfz1 10894 hashen 10895 fihashneq0 10905 omgadd 10913 fihashdom 10914 fiubz 10940 fnfz0hash 10943 ffzo0hash 10945 wrdval 10957 snopiswrd 10964 wrdsymb0 10986 fzomaxdiflem 11296 fsumzcl 11586 fisum0diag 11625 fisum0diag2 11631 binomlem 11667 binom1dif 11671 isumnn0nn 11677 expcnvre 11687 explecnv 11689 pwm1geoserap1 11692 geolim 11695 geolim2 11696 geo2sum 11698 geoisum 11701 geoisumr 11702 mertenslemub 11718 mertenslemi1 11719 mertenslem2 11720 mertensabs 11721 fprod0diagfz 11812 eftcl 11838 efval 11845 eff 11847 efcvg 11850 efcvgfsum 11851 reefcl 11852 ege2le3 11855 efcj 11857 efaddlem 11858 eftlub 11874 effsumlt 11876 efgt1p2 11879 efgt1p 11880 eflegeo 11885 eirraplem 11961 dvdsmodexp 11979 dvdsmod 12046 3dvds 12048 bitsfzolem 12138 bitsfi 12141 bitsinv1lem 12145 bitsinv1 12146 gcdn0gt0 12172 gcdaddm 12178 gcdmultipled 12187 bezoutlemle 12202 nninfctlemfo 12234 nn0seqcvgd 12236 alginv 12242 algcvg 12243 algcvga 12246 algfx 12247 eucalgval2 12248 eucalgcvga 12253 eucalg 12254 lcmcllem 12262 lcmid 12275 mulgcddvds 12289 divgcdcoprmex 12297 cncongr1 12298 cncongr2 12299 phiprmpw 12417 modprm0 12450 pcpremul 12489 pceu 12491 pcmul 12497 pcqmul 12499 pcge0 12509 pcdvdsb 12516 pcneg 12521 pcgcd1 12524 pc2dvds 12526 pcz 12528 dvdsprmpweqle 12533 qexpz 12548 4sqlemafi 12591 4sqlem11 12597 ennnfonelemjn 12646 ennnfonelemh 12648 ennnfonelem0 12649 ennnfonelem1 12651 ennnfonelemom 12652 ennnfonelemkh 12656 ennnfonelemhf1o 12657 ennnfonelemex 12658 ennnfonelemrn 12663 ennnfonelemnn0 12666 ctinfomlemom 12671 mulgval 13330 mulgfng 13332 subgmulg 13396 elply2 15079 plyf 15081 elplyd 15085 ply1termlem 15086 plyaddlem1 15091 plymullem1 15092 plymullem 15094 plycoeid3 15101 plycolemc 15102 plycjlemc 15104 plycn 15106 plyrecj 15107 dvply1 15109 sgmppw 15336 0sgmppw 15337 mersenne 15341 lgsval 15353 lgsfvalg 15354 lgscllem 15356 lgsval2lem 15359 lgsneg1 15374 lgsne0 15387 lgsquad3 15433 012of 15748 2o01f 15749 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |