Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0zd | GIF version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd | ⊢ (𝜑 → 0 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9196 | . 2 ⊢ 0 ∈ ℤ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2135 0cc0 7747 ℤcz 9185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-1re 7841 ax-addrcl 7844 ax-rnegex 7856 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2726 df-un 3118 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-iota 5150 df-fv 5193 df-ov 5842 df-neg 8066 df-z 9186 |
This theorem is referenced by: fzctr 10062 fzosubel3 10125 frecfzennn 10355 frechashgf1o 10357 0tonninf 10368 1tonninf 10369 exp3val 10451 exp0 10453 bcval 10656 bccmpl 10661 bcval5 10670 bcpasc 10673 bccl 10674 hashcl 10688 hashfiv01gt1 10689 hashfz1 10690 hashen 10691 fihashneq0 10702 omgadd 10709 fihashdom 10710 fiubz 10736 fnfz0hash 10739 ffzo0hash 10741 fzomaxdiflem 11048 fsumzcl 11337 fisum0diag 11376 fisum0diag2 11382 binomlem 11418 binom1dif 11422 isumnn0nn 11428 expcnvre 11438 explecnv 11440 pwm1geoserap1 11443 geolim 11446 geolim2 11447 geo2sum 11449 geoisum 11452 geoisumr 11453 mertenslemub 11469 mertenslemi1 11470 mertenslem2 11471 mertensabs 11472 fprod0diagfz 11563 eftcl 11589 efval 11596 eff 11598 efcvg 11601 efcvgfsum 11602 reefcl 11603 ege2le3 11606 efcj 11608 efaddlem 11609 eftlub 11625 effsumlt 11627 efgt1p2 11630 efgt1p 11631 eflegeo 11636 eirraplem 11711 dvdsmodexp 11729 dvdsmod 11794 gcdn0gt0 11905 gcdaddm 11911 gcdmultipled 11920 bezoutlemle 11935 nn0seqcvgd 11967 alginv 11973 algcvg 11974 algcvga 11977 algfx 11978 eucalgval2 11979 eucalgcvga 11984 eucalg 11985 lcmcllem 11993 lcmid 12006 mulgcddvds 12020 divgcdcoprmex 12028 cncongr1 12029 cncongr2 12030 phiprmpw 12148 modprm0 12180 pcpremul 12219 pceu 12221 pcmul 12227 pcqmul 12229 pcge0 12238 pcdvdsb 12245 pcneg 12250 pcgcd1 12253 pc2dvds 12255 pcz 12257 dvdsprmpweqle 12262 qexpz 12276 ennnfonelemjn 12329 ennnfonelemh 12331 ennnfonelem0 12332 ennnfonelem1 12334 ennnfonelemom 12335 ennnfonelemkh 12339 ennnfonelemhf1o 12340 ennnfonelemex 12341 ennnfonelemrn 12346 ennnfonelemnn0 12349 ctinfomlemom 12354 012of 13768 2o01f 13769 isomninnlem 13802 iswomninnlem 13821 ismkvnnlem 13824 dceqnconst 13831 dcapnconst 13832 |
Copyright terms: Public domain | W3C validator |