ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelfzo GIF version

Theorem nelfzo 10208
Description: An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020.)
Assertion
Ref Expression
nelfzo ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀𝑁𝐾)))

Proof of Theorem nelfzo
StepHypRef Expression
1 df-nel 2460 . 2 (𝐾 ∉ (𝑀..^𝑁) ↔ ¬ 𝐾 ∈ (𝑀..^𝑁))
2 simp2 1000 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simp1 999 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
4 zdcle 9383 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝑀𝐾)
52, 3, 4syl2anc 411 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝐾)
6 ianordc 900 . . . 4 (DECID 𝑀𝐾 → (¬ (𝑀𝐾𝐾 < 𝑁) ↔ (¬ 𝑀𝐾 ∨ ¬ 𝐾 < 𝑁)))
75, 6syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀𝐾𝐾 < 𝑁) ↔ (¬ 𝑀𝐾 ∨ ¬ 𝐾 < 𝑁)))
8 elfzo 10205 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
98notbid 668 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) ↔ ¬ (𝑀𝐾𝐾 < 𝑁)))
10 zltnle 9353 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀𝐾))
113, 2, 10syl2anc 411 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀𝐾))
12 zre 9311 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
13 zre 9311 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1412, 13anim12ci 339 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ))
15143adant2 1018 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ))
16 lenlt 8085 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑁𝐾 ↔ ¬ 𝐾 < 𝑁))
1715, 16syl 14 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐾 ↔ ¬ 𝐾 < 𝑁))
1811, 17orbi12d 794 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀𝑁𝐾) ↔ (¬ 𝑀𝐾 ∨ ¬ 𝐾 < 𝑁)))
197, 9, 183bitr4d 220 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 < 𝑀𝑁𝐾)))
201, 19bitrid 192 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀𝑁𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980  wcel 2164  wnel 2459   class class class wbr 4029  (class class class)co 5910  cr 7861   < clt 8044  cle 8045  cz 9307  ..^cfzo 10198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199
This theorem is referenced by:  wrdsymb0  10936
  Copyright terms: Public domain W3C validator