![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > wrdsymb0 | GIF version |
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
wrdsymb0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2774 | . . 3 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ V) | |
2 | 1 | adantl 277 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ V) |
3 | wrddm 10928 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) | |
4 | lencl 10924 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
5 | 4 | nn0zd 9443 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
6 | simpr 110 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ) | |
7 | 0zd 9335 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ) | |
8 | simpl 109 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (♯‘𝑊) ∈ ℤ) | |
9 | nelfzo 10224 | . . . . . . . . 9 ⊢ ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼))) | |
10 | 6, 7, 8, 9 | syl3anc 1249 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼))) |
11 | 10 | biimpar 297 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → 𝐼 ∉ (0..^(♯‘𝑊))) |
12 | df-nel 2463 | . . . . . . 7 ⊢ (𝐼 ∉ (0..^(♯‘𝑊)) ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊))) | |
13 | 11, 12 | sylib 122 | . . . . . 6 ⊢ ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ (0..^(♯‘𝑊))) |
14 | eleq2 2260 | . . . . . . 7 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → (𝐼 ∈ dom 𝑊 ↔ 𝐼 ∈ (0..^(♯‘𝑊)))) | |
15 | 14 | notbid 668 | . . . . . 6 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊)))) |
16 | 13, 15 | imbitrrid 156 | . . . . 5 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ dom 𝑊)) |
17 | 16 | exp4c 368 | . . . 4 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℤ → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)))) |
18 | 3, 5, 17 | sylc 62 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))) |
19 | 18 | imp 124 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)) |
20 | ndmfvg 5589 | . 2 ⊢ ((𝐼 ∈ V ∧ ¬ 𝐼 ∈ dom 𝑊) → (𝑊‘𝐼) = ∅) | |
21 | 2, 19, 20 | syl6an 1445 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∉ wnel 2462 Vcvv 2763 ∅c0 3450 class class class wbr 4033 dom cdm 4663 ‘cfv 5258 (class class class)co 5922 0cc0 7877 < clt 8059 ≤ cle 8060 ℤcz 9323 ..^cfzo 10214 ♯chash 10852 Word cword 10920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-inn 8988 df-n0 9247 df-z 9324 df-uz 9599 df-fz 10081 df-fzo 10215 df-ihash 10853 df-word 10921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |