ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdsymb0 GIF version

Theorem wrdsymb0 10936
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
wrdsymb0 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))

Proof of Theorem wrdsymb0
StepHypRef Expression
1 elex 2771 . . 3 (𝐼 ∈ ℤ → 𝐼 ∈ V)
21adantl 277 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ V)
3 wrddm 10912 . . . 4 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
4 lencl 10908 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
54nn0zd 9427 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
6 simpr 110 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
7 0zd 9319 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
8 simpl 109 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (♯‘𝑊) ∈ ℤ)
9 nelfzo 10208 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)))
106, 7, 8, 9syl3anc 1249 . . . . . . . 8 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)))
1110biimpar 297 . . . . . . 7 ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → 𝐼 ∉ (0..^(♯‘𝑊)))
12 df-nel 2460 . . . . . . 7 (𝐼 ∉ (0..^(♯‘𝑊)) ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊)))
1311, 12sylib 122 . . . . . 6 ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ (0..^(♯‘𝑊)))
14 eleq2 2257 . . . . . . 7 (dom 𝑊 = (0..^(♯‘𝑊)) → (𝐼 ∈ dom 𝑊𝐼 ∈ (0..^(♯‘𝑊))))
1514notbid 668 . . . . . 6 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊))))
1613, 15imbitrrid 156 . . . . 5 (dom 𝑊 = (0..^(♯‘𝑊)) → ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ dom 𝑊))
1716exp4c 368 . . . 4 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℤ → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))))
183, 5, 17sylc 62 . . 3 (𝑊 ∈ Word 𝑉 → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)))
1918imp 124 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))
20 ndmfvg 5577 . 2 ((𝐼 ∈ V ∧ ¬ 𝐼 ∈ dom 𝑊) → (𝑊𝐼) = ∅)
212, 19, 20syl6an 1445 1 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wnel 2459  Vcvv 2760  c0 3446   class class class wbr 4029  dom cdm 4655  cfv 5246  (class class class)co 5910  0cc0 7862   < clt 8044  cle 8045  cz 9307  ..^cfzo 10198  chash 10836  Word cword 10904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-en 6786  df-dom 6787  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-ihash 10837  df-word 10905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator