HomeHome Intuitionistic Logic Explorer
Theorem List (p. 106 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10501-10600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremflqcl 10501 The floor (greatest integer) function yields an integer when applied to a rational (closure law). For a similar closure law for real numbers apart from any integer, see flapcl 10503. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
 
Theoremapbtwnz 10502* There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
Theoremflapcl 10503* The floor (greatest integer) function yields an integer when applied to a real number apart from any integer. For example, an irrational number (see for example sqrt2irrap 12710) would satisfy this condition. (Contributed by Jim Kingdon, 11-May-2022.)
((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → (⌊‘𝐴) ∈ ℤ)
 
Theoremflqlelt 10504 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
 
Theoremflqcld 10505 The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → (⌊‘𝐴) ∈ ℤ)
 
Theoremflqle 10506 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
 
Theoremflqltp1 10507 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
 
Theoremqfraclt1 10508 The fractional part of a rational number is less than one. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
 
Theoremqfracge0 10509 The fractional part of a rational number is nonnegative. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
 
Theoremflqge 10510 The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
 
Theoremflqlt 10511 The floor function value is less than the next integer. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵))
 
Theoremflid 10512 An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
(𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
 
Theoremflqidm 10513 The floor function is idempotent. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴))
 
Theoremflqidz 10514 A rational number equals its floor iff it is an integer. (Contributed by Jim Kingdon, 9-Oct-2021.)
(𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
 
Theoremflqltnz 10515 If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)
 
Theoremflqwordi 10516 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵))
 
Theoremflqword2 10517 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
 
Theoremflqbi 10518 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵𝐴𝐴 < (𝐵 + 1))))
 
Theoremflqbi2 10519 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))
 
Theoremadddivflid 10520 The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
 
Theoremflqge0nn0 10521 The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
 
Theoremflqge1nn 10522 The floor of a number greater than or equal to 1 is a positive integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
 
Theoremfldivnn0 10523 The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℕ0)
 
Theoremdivfl0 10524 The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))
 
Theoremflqaddz 10525 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
 
Theoremflqzadd 10526 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℚ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴)))
 
Theoremflqmulnn0 10527 Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
 
Theorembtwnzge0 10528 A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.)
(((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁))
 
Theorem2tnp1ge0ge0 10529 Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
(𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
 
Theoremflhalf 10530 Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
(𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
 
Theoremfldivnn0le 10531 The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
 
Theoremflltdivnn0lt 10532 The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
 
Theoremfldiv4p1lem1div2 10533 The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
 
Theoremfldiv4lem1div2uz2 10534 The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.)
(𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
 
Theoremfldiv4lem1div2 10535 The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
(𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
 
Theoremceilqval 10536 The value of the ceiling function. (Contributed by Jim Kingdon, 10-Oct-2021.)
(𝐴 ∈ ℚ → (⌈‘𝐴) = -(⌊‘-𝐴))
 
Theoremceiqcl 10537 The ceiling function returns an integer (closure law). (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → -(⌊‘-𝐴) ∈ ℤ)
 
Theoremceilqcl 10538 Closure of the ceiling function. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
 
Theoremceiqge 10539 The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 ≤ -(⌊‘-𝐴))
 
Theoremceilqge 10540 The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
 
Theoremceiqm1l 10541 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (-(⌊‘-𝐴) − 1) < 𝐴)
 
Theoremceilqm1lt 10542 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → ((⌈‘𝐴) − 1) < 𝐴)
 
Theoremceiqle 10543 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → -(⌊‘-𝐴) ≤ 𝐵)
 
Theoremceilqle 10544 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → (⌈‘𝐴) ≤ 𝐵)
 
Theoremceilid 10545 An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
 
Theoremceilqidz 10546 A rational number equals its ceiling iff it is an integer. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
 
Theoremflqleceil 10547 The floor of a rational number is less than or equal to its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ≤ (⌈‘𝐴))
 
Theoremflqeqceilz 10548 A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
 
Theoremintqfrac2 10549 Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.)
𝑍 = (⌊‘𝐴)    &   𝐹 = (𝐴𝑍)       (𝐴 ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
 
Theoremintfracq 10550 Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 10549. (Contributed by NM, 16-Aug-2008.)
𝑍 = (⌊‘(𝑀 / 𝑁))    &   𝐹 = ((𝑀 / 𝑁) − 𝑍)       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
 
Theoremflqdiv 10551 Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
 
4.6.2  The modulo (remainder) operation
 
Syntaxcmo 10552 Extend class notation with the modulo operation.
class mod
 
Definitiondf-mod 10553* Define the modulo (remainder) operation. See modqval 10554 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10498 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
 
Theoremmodqval 10554 The value of the modulo operation. The modulo congruence notation of number theory, 𝐽𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive numbers to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) As with flqcl 10501 we only prove this for rationals although other particular kinds of real numbers may be possible. (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
 
Theoremmodqvalr 10555 The value of the modulo operation (multiplication in reversed order). (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
 
Theoremmodqcl 10556 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ ℚ)
 
Theoremflqpmodeq 10557 Partition of a division into its integer part and the remainder. (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)
 
Theoremmodqcld 10558 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐴 mod 𝐵) ∈ ℚ)
 
Theoremmodq0 10559 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jim Kingdon, 17-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))
 
Theoremmulqmod0 10560 The product of an integer and a positive rational number is 0 modulo the positive real number. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 · 𝑀) mod 𝑀) = 0)
 
Theoremnegqmod0 10561 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))
 
Theoremmodqge0 10562 The modulo operation is nonnegative. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵))
 
Theoremmodqlt 10563 The modulo operation is less than its second argument. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) < 𝐵)
 
Theoremmodqelico 10564 Modular reduction produces a half-open interval. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ (0[,)𝐵))
 
Theoremmodqdiffl 10565 The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
 
Theoremmodqdifz 10566 The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ)
 
Theoremmodqfrac 10567 The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))
 
Theoremflqmod 10568 The floor function expressed in terms of the modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1)))
 
Theoremintqfrac 10569 Break a number into its integer part and its fractional part. (Contributed by Jim Kingdon, 18-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1)))
 
Theoremzmod10 10570 An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
 
Theoremzmod1congr 10571 Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1))
 
Theoremmodqmulnn 10572 Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
 
Theoremmodqvalp1 10573 The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Jim Kingdon, 20-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵))
 
Theoremzmodcl 10574 Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0)
 
Theoremzmodcld 10575 Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0)
 
Theoremzmodfz 10576 An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1)))
 
Theoremzmodfzo 10577 An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵))
 
Theoremzmodfzp1 10578 An integer mod 𝐵 lies in the first 𝐵 + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...𝐵))
 
Theoremmodqid 10579 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
 
Theoremmodqid0 10580 A positive real number modulo itself is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 mod 𝑁) = 0)
 
Theoremmodqid2 10581 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴𝐴 < 𝐵)))
 
Theoremzmodid2 10582 Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))
 
Theoremzmodidfzo 10583 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0..^𝑁)))
 
Theoremzmodidfzoimp 10584 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
(𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀)
 
Theoremq0mod 10585 Special case: 0 modulo a positive real number is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
 
Theoremq1mod 10586 Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
 
Theoremmodqabs 10587 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐵𝐶)       (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵))
 
Theoremmodqabs2 10588 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵))
 
Theoremmodqcyc 10589 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
 
Theoremmodqcyc2 10590 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))
 
Theoremmodqadd1 10591 Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑 → 0 < 𝐷)    &   (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))       (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
 
Theoremmodqaddabs 10592 Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
 
Theoremmodqaddmod 10593 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀))
 
Theoremmulqaddmodid 10594 The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
(((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
 
Theoremmulp1mod1 10595 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
 
Theoremmodqmuladd 10596* Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐵 ∈ (0[,)𝑀))    &   (𝜑𝑀 ∈ ℚ)    &   (𝜑 → 0 < 𝑀)       (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
 
Theoremmodqmuladdim 10597* Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
 
Theoremmodqmuladdnn0 10598* Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
 
Theoremqnegmod 10599 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
 
Theoremm1modnnsub1 10600 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
(𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >