![]() |
Intuitionistic Logic Explorer Theorem List (p. 106 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fzfig 10501 | A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) | ||
Theorem | fzfigd 10502 | Deduction form of fzfig 10501. (Contributed by Jim Kingdon, 21-May-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
Theorem | fzofig 10503 | Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) | ||
Theorem | nn0ennn 10504 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
⊢ ℕ0 ≈ ℕ | ||
Theorem | nnenom 10505 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of natural numbers as ordinals). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ℕ ≈ ω | ||
Theorem | nnct 10506 | ℕ is dominated by ω. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ ℕ ≼ ω | ||
Theorem | uzennn 10507 | An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ≈ ℕ) | ||
Theorem | xnn0nnen 10508 | The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.) |
⊢ ℕ0* ≈ ℕ | ||
Theorem | fnn0nninf 10509* | A function from ℕ0 into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ⇒ ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ | ||
Theorem | fxnn0nninf 10510* | A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7183 instead of infnninfOLD 7184. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7186. |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ 𝐼:ℕ0*⟶ℕ∞ | ||
Theorem | 0tonninf 10511* | The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) | ||
Theorem | 1tonninf 10512* | The mapping of one into ℕ∞ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅)) | ||
Theorem | inftonninf 10513* | The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) | ||
Theorem | nninfinf 10514 | ℕ∞ is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.) |
⊢ ω ≼ ℕ∞ | ||
Theorem | uzsinds 10515* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
Theorem | nnsinds 10516* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
Theorem | nn0sinds 10517* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
Syntax | cseq 10518 | Extend class notation with recursive sequence builder. |
class seq𝑀( + , 𝐹) | ||
Definition | df-seqfrec 10519* |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seqf 10535, seq3-1 10533 and
seq3p1 10536. Typically, those are the main theorems
that would be used in
practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 11436), by climdm 11438 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the frec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain. (Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.) |
⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | ||
Theorem | seqex 10520 | Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ seq𝑀( + , 𝐹) ∈ V | ||
Theorem | seqeq1 10521 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) | ||
Theorem | seqeq2 10522 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
Theorem | seqeq3 10523 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seqeq1d 10524 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | ||
Theorem | seqeq2d 10525 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) | ||
Theorem | seqeq3d 10526 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | ||
Theorem | seqeq123d 10527 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) | ||
Theorem | nfseq 10528 | Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | ||
Theorem | iseqovex 10529* | Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) | ||
Theorem | iseqvalcbv 10530* | Changing the bound variables in an expression which appears in some seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.) |
⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) | ||
Theorem | seq3val 10531* | Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10535, seq3-1 10533 and seq3p1 10536, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) | ||
Theorem | seqvalcd 10532* | Value of the sequence builder function. Similar to seq3val 10531 but the classes 𝐷 (type of each term) and 𝐶 (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) & ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) | ||
Theorem | seq3-1 10533* | Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
Theorem | seq1g 10534 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ∧ + ∈ 𝑊) → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
Theorem | seqf 10535* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) | ||
Theorem | seq3p1 10536* | Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
Theorem | seqp1g 10537 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹 ∈ 𝑉 ∧ + ∈ 𝑊) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
Theorem | seqovcd 10538* | A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10539 and seq1cd 10540 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) | ||
Theorem | seqf2 10539* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) | ||
Theorem | seq1cd 10540* | Initial value of the recursive sequence builder. A version of seq3-1 10533 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
Theorem | seqp1cd 10541* | Value of the sequence builder function at a successor. A version of seq3p1 10536 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
Theorem | seq3clss 10542* | Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) ∈ 𝑇) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
Theorem | seqclg 10543* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
Theorem | seq3m1 10544* | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
Theorem | seqm1g 10545 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
Theorem | seq3fveq2 10546* | Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
Theorem | seq3feq2 10547* | Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) | ||
Theorem | seqfveq2g 10548* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
Theorem | seqfveqg 10549* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seq3fveq 10550* | Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seq3feq 10551* | Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seq3shft2 10552* | Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
Theorem | seqshft2g 10553* | Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
Theorem | serf 10554* | An infinite series of complex terms is a function from ℕ to ℂ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) | ||
Theorem | serfre 10555* | An infinite series of real numbers is a function from ℕ to ℝ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) | ||
Theorem | monoord 10556* | Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
Theorem | monoord2 10557* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
Theorem | ser3mono 10558* | The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | seq3split 10559* | Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seqsplitg 10560* | Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seq3-1p 10561* | Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seq3caopr3 10562* | Lemma for seq3caopr2 10564. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaopr3g 10563* | Lemma for seqcaopr2g 10565. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seq3caopr2 10564* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaopr2g 10565* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑌) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seq3caopr 10566* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaoprg 10567* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑌) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | iseqf1olemkle 10568* | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝐾 ≤ (◡𝐽‘𝐾)) | ||
Theorem | iseqf1olemklt 10569* | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) ⇒ ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) | ||
Theorem | iseqf1olemqcl 10570 | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) | ||
Theorem | iseqf1olemqval 10571* | Lemma for seq3f1o 10588. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) | ||
Theorem | iseqf1olemnab 10572* | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | ||
Theorem | iseqf1olemab 10573* | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) & ⊢ (𝜑 → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | iseqf1olemnanb 10574* | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) & ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | iseqf1olemqf 10575* | Lemma for seq3f1o 10588. Domain and codomain of 𝑄. (Contributed by Jim Kingdon, 26-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) | ||
Theorem | iseqf1olemmo 10576* | Lemma for seq3f1o 10588. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | iseqf1olemqf1o 10577* | Lemma for seq3f1o 10588. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ⇒ ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | ||
Theorem | iseqf1olemqk 10578* | Lemma for seq3f1o 10588. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄‘𝑥) = 𝑥) | ||
Theorem | iseqf1olemjpcl 10579* | Lemma for seq3f1o 10588. A closure lemma involving 𝐽 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) | ||
Theorem | iseqf1olemqpcl 10580* | Lemma for seq3f1o 10588. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) | ||
Theorem | iseqf1olemfvp 10581* | Lemma for seq3f1o 10588. (Contributed by Jim Kingdon, 30-Aug-2022.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (⦋𝑇 / 𝑓⦌𝑃‘𝐴) = (𝐺‘(𝑇‘𝐴))) | ||
Theorem | seq3f1olemqsumkj 10582* | Lemma for seq3f1o 10588. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(◡𝐽‘𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) | ||
Theorem | seq3f1olemqsumk 10583* | Lemma for seq3f1o 10588. 𝑄 gives the same sum as 𝐽 in the range (𝐾...𝑁). (Contributed by Jim Kingdon, 22-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | ||
Theorem | seq3f1olemqsum 10584* | Lemma for seq3f1o 10588. 𝑄 gives the same sum as 𝐽. (Contributed by Jim Kingdon, 21-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) & ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | ||
Theorem | seq3f1olemstep 10585* | Lemma for seq3f1o 10588. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) & ⊢ (𝜑 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) | ||
Theorem | seq3f1olemp 10586* | Lemma for seq3f1o 10588. Existence of a constant permutation of (𝑀...𝑁) which leads to the same sum as the permutation 𝐹 itself. (Contributed by Jim Kingdon, 18-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝐿 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀))) & ⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) | ||
Theorem | seq3f1oleml 10587* | Lemma for seq3f1o 10588. This is more or less the result, but stated in terms of 𝐹 and 𝐺 without 𝐻. 𝐿 and 𝐻 may differ in terms of what happens to terms after 𝑁. The terms after 𝑁 don't matter for the value at 𝑁 but we need some definition given the way our theorems concerning seq work. (Contributed by Jim Kingdon, 17-Aug-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ 𝐿 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seq3f1o 10588* | Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seqf1oglem2a 10589* | Lemma for seqf1og 10592. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) | ||
Theorem | seqf1oglem1 10590* | Lemma for seqf1og 10592. (Contributed by Mario Carneiro, 26-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) & ⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝐶) & ⊢ 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)))) & ⊢ 𝐾 = (◡𝐹‘(𝑁 + 1)) ⇒ ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | ||
Theorem | seqf1oglem2 10591* | Lemma for seqf1og 10592. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) & ⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝐶) & ⊢ 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)))) & ⊢ 𝐾 = (◡𝐹‘(𝑁 + 1)) & ⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) ⇒ ⊢ (𝜑 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1))) | ||
Theorem | seqf1og 10592* | Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | ser3add 10593* | The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | ser3sub 10594* | The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seq3id3 10595* | A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | ||
Theorem | seq3id 10596* | Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) | ||
Theorem | seq3id2 10597* | The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑥) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | seq3homo 10598* | Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) | ||
Theorem | seq3z 10599* | If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑍) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝑍) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | ||
Theorem | seqfeq3 10600* | Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |