| Intuitionistic Logic Explorer Theorem List (p. 106 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | modqmulmodr 10501 | The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
| Theorem | modqaddmulmod 10502 | The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) | ||
| Theorem | modqdi 10503 | Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| ⊢ (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) | ||
| Theorem | modqsubdir 10504 | Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) | ||
| Theorem | modqeqmodmin 10505 | A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) | ||
| Theorem | modfzo0difsn 10506* | For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | ||
| Theorem | modsumfzodifsn 10507 | The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | ||
| Theorem | modlteq 10508 | Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | addmodlteq 10509 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | frec2uz0d 10510* | The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐶) | ||
| Theorem | frec2uzzd 10511* | The value of 𝐺 (see frec2uz0d 10510) is an integer. (Contributed by Jim Kingdon, 16-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) | ||
| Theorem | frec2uzsucd 10512* | The value of 𝐺 (see frec2uz0d 10510) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | ||
| Theorem | frec2uzuzd 10513* | The value 𝐺 (see frec2uz0d 10510) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | ||
| Theorem | frec2uzltd 10514* | Less-than relation for 𝐺 (see frec2uz0d 10510). (Contributed by Jim Kingdon, 16-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
| Theorem | frec2uzlt2d 10515* | The mapping 𝐺 (see frec2uz0d 10510) preserves order. (Contributed by Jim Kingdon, 16-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
| Theorem | frec2uzrand 10516* | Range of 𝐺 (see frec2uz0d 10510). (Contributed by Jim Kingdon, 17-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) | ||
| Theorem | frec2uzf1od 10517* | 𝐺 (see frec2uz0d 10510) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) | ||
| Theorem | frec2uzisod 10518* | 𝐺 (see frec2uz0d 10510) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) | ||
| Theorem | frecuzrdgrrn 10519* | The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. (Contributed by Jim Kingdon, 28-Mar-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ω) → (𝑅‘𝐷) ∈ ((ℤ≥‘𝐶) × 𝑆)) | ||
| Theorem | frec2uzrdg 10520* | A helper lemma for the value of a recursive definition generator on upper integers (typically either ℕ or ℕ0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. This lemma shows that evaluating 𝑅 at an element of ω gives an ordered pair whose first element is the index (translated from ω to (ℤ≥‘𝐶)). See comment in frec2uz0d 10510 which describes 𝐺 and the index translation. (Contributed by Jim Kingdon, 24-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
| Theorem | frecuzrdgrcl 10521* | The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) | ||
| Theorem | frecuzrdglem 10522* | A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶)) ⇒ ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
| Theorem | frecuzrdgtcl 10523* | The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10510 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 26-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) | ||
| Theorem | frecuzrdg0 10524* | Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10510 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 27-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) | ||
| Theorem | frecuzrdgsuc 10525* | Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10510 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 28-May-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇‘𝐵))) | ||
| Theorem | frecuzrdgrclt 10526* | The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. Similar to frecuzrdgrcl 10521 except that 𝑆 and 𝑇 need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) | ||
| Theorem | frecuzrdgg 10527* | Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating 𝑅 at a natural number gives an ordered pair whose first element is the mapping of that natural number via 𝐺. (Contributed by Jim Kingdon, 23-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → (1st ‘(𝑅‘𝑁)) = (𝐺‘𝑁)) | ||
| Theorem | frecuzrdgdomlem 10528* | The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) | ||
| Theorem | frecuzrdgdom 10529* | The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) | ||
| Theorem | frecuzrdgfunlem 10530* | The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → Fun ran 𝑅) | ||
| Theorem | frecuzrdgfun 10531* | The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → Fun ran 𝑅) | ||
| Theorem | frecuzrdgtclt 10532* | The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) | ||
| Theorem | frecuzrdg0t 10533* | Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) | ||
| Theorem | frecuzrdgsuctlem 10534* | Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10510 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 29-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) | ||
| Theorem | frecuzrdgsuct 10535* | Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) | ||
| Theorem | uzenom 10536 | An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) | ||
| Theorem | frecfzennn 10537 | The cardinality of a finite set of sequential integers. (See frec2uz0d 10510 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡𝐺‘𝑁)) | ||
| Theorem | frecfzen2 10538 | The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | ||
| Theorem | frechashgf1o 10539 | 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Jim Kingdon, 19-May-2020.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 | ||
| Theorem | frec2uzled 10540* | The mapping 𝐺 (see frec2uz0d 10510) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.) |
| ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) | ||
| Theorem | fzfig 10541 | A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) | ||
| Theorem | fzfigd 10542 | Deduction form of fzfig 10541. (Contributed by Jim Kingdon, 21-May-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
| Theorem | fzofig 10543 | Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) | ||
| Theorem | nn0ennn 10544 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| ⊢ ℕ0 ≈ ℕ | ||
| Theorem | nnenom 10545 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of natural numbers as ordinals). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ℕ ≈ ω | ||
| Theorem | nnct 10546 | ℕ is dominated by ω. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ ℕ ≼ ω | ||
| Theorem | uzennn 10547 | An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ≈ ℕ) | ||
| Theorem | xnn0nnen 10548 | The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.) |
| ⊢ ℕ0* ≈ ℕ | ||
| Theorem | fnn0nninf 10549* | A function from ℕ0 into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ⇒ ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ | ||
| Theorem | fxnn0nninf 10550* | A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7199 instead of infnninfOLD 7200. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7202. |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ 𝐼:ℕ0*⟶ℕ∞ | ||
| Theorem | 0tonninf 10551* | The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) | ||
| Theorem | 1tonninf 10552* | The mapping of one into ℕ∞ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅)) | ||
| Theorem | inftonninf 10553* | The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) | ||
| Theorem | nninfinf 10554 | ℕ∞ is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.) |
| ⊢ ω ≼ ℕ∞ | ||
| Theorem | uzsinds 10555* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
| Theorem | nnsinds 10556* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
| Theorem | nn0sinds 10557* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
| Syntax | cseq 10558 | Extend class notation with recursive sequence builder. |
| class seq𝑀( + , 𝐹) | ||
| Definition | df-seqfrec 10559* |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seqf 10575, seq3-1 10573 and
seq3p1 10576. Typically, those are the main theorems
that would be used in
practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 11477), by climdm 11479 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the frec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain. (Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.) |
| ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | ||
| Theorem | seqex 10560 | Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ seq𝑀( + , 𝐹) ∈ V | ||
| Theorem | seqeq1 10561 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) | ||
| Theorem | seqeq2 10562 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
| Theorem | seqeq3 10563 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
| Theorem | seqeq1d 10564 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | ||
| Theorem | seqeq2d 10565 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) | ||
| Theorem | seqeq3d 10566 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | ||
| Theorem | seqeq123d 10567 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) | ||
| Theorem | nfseq 10568 | Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | ||
| Theorem | iseqovex 10569* | Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) | ||
| Theorem | iseqvalcbv 10570* | Changing the bound variables in an expression which appears in some seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.) |
| ⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) | ||
| Theorem | seq3val 10571* | Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10575, seq3-1 10573 and seq3p1 10576, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) | ||
| Theorem | seqvalcd 10572* | Value of the sequence builder function. Similar to seq3val 10571 but the classes 𝐷 (type of each term) and 𝐶 (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) & ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) | ||
| Theorem | seq3-1 10573* | Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| Theorem | seq1g 10574 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ∧ + ∈ 𝑊) → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| Theorem | seqf 10575* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) | ||
| Theorem | seq3p1 10576* | Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
| Theorem | seqp1g 10577 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹 ∈ 𝑉 ∧ + ∈ 𝑊) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
| Theorem | seqovcd 10578* | A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10579 and seq1cd 10580 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) | ||
| Theorem | seqf2 10579* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.) |
| ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) | ||
| Theorem | seq1cd 10580* | Initial value of the recursive sequence builder. A version of seq3-1 10573 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.) |
| ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| Theorem | seqp1cd 10581* | Value of the sequence builder function at a successor. A version of seq3p1 10576 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
| Theorem | seq3clss 10582* | Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) ∈ 𝑇) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
| Theorem | seqclg 10583* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
| Theorem | seq3m1 10584* | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
| Theorem | seqm1g 10585 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
| Theorem | seq3fveq2 10586* | Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
| Theorem | seq3feq2 10587* | Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) | ||
| Theorem | seqfveq2g 10588* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
| Theorem | seqfveqg 10589* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
| Theorem | seq3fveq 10590* | Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
| Theorem | seq3feq 10591* | Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
| Theorem | seq3shft2 10592* | Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
| Theorem | seqshft2g 10593* | Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
| Theorem | serf 10594* | An infinite series of complex terms is a function from ℕ to ℂ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) | ||
| Theorem | serfre 10595* | An infinite series of real numbers is a function from ℕ to ℝ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) | ||
| Theorem | monoord 10596* | Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
| Theorem | monoord2 10597* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
| Theorem | ser3mono 10598* | The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | seq3split 10599* | Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
| Theorem | seqsplitg 10600* | Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → + ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |