| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxccatin12lem4 | GIF version | ||
| Description: Lemma 4 for pfxccatin12 11224. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.) |
| Ref | Expression |
|---|---|
| pfxccatin12lem4 | ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 9427 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ) | |
| 2 | nn0z 9427 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 3 | zsubcl 9448 | . . . . . 6 ⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) | |
| 4 | 1, 2, 3 | syl2an 289 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝐿 − 𝑀) ∈ ℤ) |
| 5 | 4 | 3adant3 1020 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) |
| 6 | elfzonelfzo 10396 | . . . . 5 ⊢ ((𝐿 − 𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) | |
| 7 | 6 | imp 124 | . . . 4 ⊢ (((𝐿 − 𝑀) ∈ ℤ ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
| 8 | 5, 7 | sylan 283 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
| 9 | nn0cn 9340 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
| 10 | nn0cn 9340 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
| 11 | zcn 9412 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 12 | npncan3 8345 | . . . . . . 7 ⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) | |
| 13 | 9, 10, 11, 12 | syl3an 1292 | . . . . . 6 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
| 14 | 13 | oveq2d 5983 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) = ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
| 15 | 14 | eleq2d 2277 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
| 16 | 15 | adantr 276 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
| 17 | 8, 16 | mpbird 167 | . 2 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
| 18 | 17 | ex 115 | 1 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 (class class class)co 5967 ℂcc 7958 0cc0 7960 + caddc 7963 − cmin 8278 ℕ0cn0 9330 ℤcz 9407 ..^cfzo 10299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: pfxccatin12 11224 |
| Copyright terms: Public domain | W3C validator |