ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccatin1 GIF version

Theorem swrdccatin1 11216
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))

Proof of Theorem swrdccatin1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . 6 ((♯‘𝐴) = 0 → (0...(♯‘𝐴)) = (0...0))
21eleq2d 2277 . . . . 5 ((♯‘𝐴) = 0 → (𝑁 ∈ (0...(♯‘𝐴)) ↔ 𝑁 ∈ (0...0)))
32adantl 277 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) = 0) → (𝑁 ∈ (0...(♯‘𝐴)) ↔ 𝑁 ∈ (0...0)))
4 elfz1eq 10192 . . . . . . 7 (𝑁 ∈ (0...0) → 𝑁 = 0)
5 elfz1eq 10192 . . . . . . . . . . 11 (𝑀 ∈ (0...0) → 𝑀 = 0)
6 ccatcl 11087 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
7 0z 9418 . . . . . . . . . . . . . . 15 0 ∈ ℤ
8 swrd00g 11140 . . . . . . . . . . . . . . 15 (((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 0 ∈ ℤ) → ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = ∅)
96, 7, 8sylancl 413 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = ∅)
10 simpl 109 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
11 swrd00g 11140 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝐴 substr ⟨0, 0⟩) = ∅)
1210, 7, 11sylancl 413 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 substr ⟨0, 0⟩) = ∅)
139, 12eqtr4d 2243 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = (𝐴 substr ⟨0, 0⟩))
1413adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 = 0) → ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = (𝐴 substr ⟨0, 0⟩))
15 opeq1 3833 . . . . . . . . . . . . . 14 (𝑀 = 0 → ⟨𝑀, 0⟩ = ⟨0, 0⟩)
1615oveq2d 5983 . . . . . . . . . . . . 13 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = ((𝐴 ++ 𝐵) substr ⟨0, 0⟩))
1716adantl 277 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 = 0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = ((𝐴 ++ 𝐵) substr ⟨0, 0⟩))
1815oveq2d 5983 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝐴 substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨0, 0⟩))
1918adantl 277 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 = 0) → (𝐴 substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨0, 0⟩))
2014, 17, 193eqtr4d 2250 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 = 0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
215, 20sylan2 286 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...0)) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
2221ex 115 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩)))
2322adantr 276 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 = 0) → (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩)))
24 oveq2 5975 . . . . . . . . . . 11 (𝑁 = 0 → (0...𝑁) = (0...0))
2524eleq2d 2277 . . . . . . . . . 10 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ∈ (0...0)))
26 opeq2 3834 . . . . . . . . . . . 12 (𝑁 = 0 → ⟨𝑀, 𝑁⟩ = ⟨𝑀, 0⟩)
2726oveq2d 5983 . . . . . . . . . . 11 (𝑁 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩))
2826oveq2d 5983 . . . . . . . . . . 11 (𝑁 = 0 → (𝐴 substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 0⟩))
2927, 28eqeq12d 2222 . . . . . . . . . 10 (𝑁 = 0 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩)))
3025, 29imbi12d 234 . . . . . . . . 9 (𝑁 = 0 → ((𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)) ↔ (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))))
3130adantl 277 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 = 0) → ((𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)) ↔ (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))))
3223, 31mpbird 167 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 = 0) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
334, 32sylan2 286 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...0)) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
3433ex 115 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...0) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
3534adantr 276 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) = 0) → (𝑁 ∈ (0...0) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
363, 35sylbid 150 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) = 0) → (𝑁 ∈ (0...(♯‘𝐴)) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
3736impcomd 255 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) = 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
386ad2antrr 488 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
39 simprl 529 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → 𝑀 ∈ (0...𝑁))
40 elfzelfzccat 11094 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
4140imp 124 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
4241ad2ant2rl 511 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
43 swrdvalfn 11147 . . . . 5 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
4438, 39, 42, 43syl3anc 1250 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
45 3anass 985 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) ↔ (𝐴 ∈ Word 𝑉 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
4645simplbi2 385 . . . . . . 7 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
4746ad2antrr 488 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
4847imp 124 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
49 swrdvalfn 11147 . . . . 5 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
5048, 49syl 14 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
51 simp-4l 541 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐴 ∈ Word 𝑉)
52 simp-4r 542 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐵 ∈ Word 𝑉)
53 elfznn0 10271 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
54 nn0addcl 9365 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
5554expcom 116 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
5653, 55syl 14 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
5756ad2antrl 490 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
58 elfzonn0 10347 . . . . . . . 8 (𝑘 ∈ (0..^(𝑁𝑀)) → 𝑘 ∈ ℕ0)
5957, 58impel 280 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
60 lencl 11035 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
61 elnnne0 9344 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐴) ≠ 0))
6261simplbi2 385 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
6360, 62syl 14 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
6463adantr 276 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
6564imp 124 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → (♯‘𝐴) ∈ ℕ)
6665ad2antrr 488 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (♯‘𝐴) ∈ ℕ)
67 elfzo0 10343 . . . . . . . . 9 (𝑘 ∈ (0..^(𝑁𝑀)) ↔ (𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)))
68 elfz2nn0 10269 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)))
69 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7069ad2antrl 490 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑘 ∈ ℝ)
71 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
7271ad2antll 491 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑀 ∈ ℝ)
73 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
7473ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑁 ∈ ℝ)
7570, 72, 74ltaddsubd 8653 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁𝑘 < (𝑁𝑀)))
76 nn0readdcl 9389 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℝ)
7776adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 + 𝑀) ∈ ℝ)
78 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
7978ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (♯‘𝐴) ∈ ℝ)
80 ltletr 8197 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑘 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8177, 74, 79, 80syl3anc 1250 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8281expd 258 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁 → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴))))
8375, 82sylbird 170 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴))))
8483ex 115 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴)))))
8584com24 87 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (𝑁 ≤ (♯‘𝐴) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (♯‘𝐴)))))
86853impia 1203 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (♯‘𝐴))))
8786com13 80 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
8887impancom 260 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
89883adant2 1019 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
9089com13 80 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴))))
9168, 90sylbi 121 . . . . . . . . . . 11 (𝑁 ∈ (0...(♯‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴))))
9253, 91mpan9 281 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
9392adantl 277 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
9467, 93biimtrid 152 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝑘 ∈ (0..^(𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
9594imp 124 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) < (♯‘𝐴))
96 elfzo0 10343 . . . . . . 7 ((𝑘 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝑘 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑘 + 𝑀) < (♯‘𝐴)))
9759, 66, 95, 96syl3anbrc 1184 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ (0..^(♯‘𝐴)))
98 ccatval1 11091 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
9951, 52, 97, 98syl3anc 1250 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
1006ad3antrrr 492 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
101 simplrl 535 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
10242adantr 276 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
103 simpr 110 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ (0..^(𝑁𝑀)))
104 swrdfv 11144 . . . . . 6 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
105100, 101, 102, 103, 104syl31anc 1253 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
106 swrdfv 11144 . . . . . 6 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
10748, 106sylan 283 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
10899, 105, 1073eqtr4d 2250 . . . 4 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘))
10944, 50, 108eqfnfvd 5703 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
110109ex 115 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
11160nn0zd 9528 . . . . 5 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
112 zdceq 9483 . . . . 5 (((♯‘𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (♯‘𝐴) = 0)
113111, 7, 112sylancl 413 . . . 4 (𝐴 ∈ Word 𝑉DECID (♯‘𝐴) = 0)
114 dcne 2389 . . . 4 (DECID (♯‘𝐴) = 0 ↔ ((♯‘𝐴) = 0 ∨ (♯‘𝐴) ≠ 0))
115113, 114sylib 122 . . 3 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) ≠ 0))
116115adantr 276 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) ≠ 0))
11737, 110, 116mpjaodan 800 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2178  wne 2378  c0 3468  cop 3646   class class class wbr 4059   Fn wfn 5285  cfv 5290  (class class class)co 5967  cr 7959  0cc0 7960   + caddc 7963   < clt 8142  cle 8143  cmin 8278  cn 9071  0cn0 9330  cz 9407  ...cfz 10165  ..^cfzo 10299  chash 10957  Word cword 11031   ++ cconcat 11084   substr csubstr 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137
This theorem is referenced by:  pfxccat3  11225  pfxccatpfx1  11227  swrdccatin1d  11234
  Copyright terms: Public domain W3C validator