| Step | Hyp | Ref
| Expression |
| 1 | | swrdccatin2.l |
. . . . 5
⊢ 𝐿 = (♯‘𝐴) |
| 2 | 1 | pfxccatin12lem2c 11221 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
| 3 | | swrdvalfn 11147 |
. . . 4
⊢ (((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀))) |
| 4 | 2, 3 | syl 14 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀))) |
| 5 | | simpll 527 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉) |
| 6 | | elfzelz 10182 |
. . . . . . 7
⊢ (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℤ) |
| 7 | 6 | ad2antrl 490 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ ℤ) |
| 8 | | elfzel1 10181 |
. . . . . . 7
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝐿 ∈ ℤ) |
| 9 | 8 | ad2antll 491 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ ℤ) |
| 10 | | swrdclg 11141 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉) |
| 11 | 5, 7, 9, 10 | syl3anc 1250 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉) |
| 12 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉) |
| 13 | | elfzle1 10184 |
. . . . . . . 8
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝐿 ≤ 𝑁) |
| 14 | | elfzelz 10182 |
. . . . . . . . 9
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ) |
| 15 | | znn0sub 9473 |
. . . . . . . . 9
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 ≤ 𝑁 ↔ (𝑁 − 𝐿) ∈
ℕ0)) |
| 16 | 8, 14, 15 | syl2anc 411 |
. . . . . . . 8
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ≤ 𝑁 ↔ (𝑁 − 𝐿) ∈
ℕ0)) |
| 17 | 13, 16 | mpbid 147 |
. . . . . . 7
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈
ℕ0) |
| 18 | 17 | ad2antll 491 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈
ℕ0) |
| 19 | | pfxclg 11169 |
. . . . . 6
⊢ ((𝐵 ∈ Word 𝑉 ∧ (𝑁 − 𝐿) ∈ ℕ0) → (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉) |
| 20 | 12, 18, 19 | syl2anc 411 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉) |
| 21 | | ccatvalfn 11095 |
. . . . 5
⊢ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉) → ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))) Fn (0..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))))) |
| 22 | 11, 20, 21 | syl2anc 411 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))) Fn (0..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))))) |
| 23 | | simprl 529 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿)) |
| 24 | | lencl 11035 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) |
| 25 | | nn0fz0 10276 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ ℕ0 ↔ (♯‘𝐴) ∈ (0...(♯‘𝐴))) |
| 26 | 24, 25 | sylib 122 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ (0...(♯‘𝐴))) |
| 27 | 1, 26 | eqeltrid 2294 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Word 𝑉 → 𝐿 ∈ (0...(♯‘𝐴))) |
| 28 | 27 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴))) |
| 29 | | swrdlen 11143 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr 〈𝑀, 𝐿〉)) = (𝐿 − 𝑀)) |
| 30 | 5, 23, 28, 29 | syl3anc 1250 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐴 substr 〈𝑀, 𝐿〉)) = (𝐿 − 𝑀)) |
| 31 | | lencl 11035 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈
ℕ0) |
| 32 | 31 | nn0zd 9528 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ) |
| 33 | | elfzmlbp 10289 |
. . . . . . . . . . 11
⊢
(((♯‘𝐵)
∈ ℤ ∧ 𝑁
∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
| 34 | 32, 33 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
| 35 | | pfxlen 11176 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Word 𝑉 ∧ (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) → (♯‘(𝐵 prefix (𝑁 − 𝐿))) = (𝑁 − 𝐿)) |
| 36 | 34, 35 | syldan 282 |
. . . . . . . . 9
⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (♯‘(𝐵 prefix (𝑁 − 𝐿))) = (𝑁 − 𝐿)) |
| 37 | 36 | ad2ant2l 508 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐵 prefix (𝑁 − 𝐿))) = (𝑁 − 𝐿)) |
| 38 | 30, 37 | oveq12d 5985 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))) = ((𝐿 − 𝑀) + (𝑁 − 𝐿))) |
| 39 | | elfz2nn0 10269 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑀 ≤ 𝐿)) |
| 40 | | nn0cn 9340 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℂ) |
| 41 | 40 | ad2antll 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0)) → 𝐿 ∈ ℂ) |
| 42 | | nn0cn 9340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
| 43 | 42 | ad2antrl 490 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0)) → 𝑀 ∈ ℂ) |
| 44 | | zcn 9412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 45 | 44 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0)) → 𝑁 ∈ ℂ) |
| 46 | 41, 43, 45 | 3jca 1180 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0)) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 47 | 46 | ex 115 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
| 48 | 47, 14 | syl11 31 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
| 49 | 48 | 3adant3 1020 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝑀
≤ 𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
| 50 | 39, 49 | sylbi 121 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
| 51 | 50 | imp 124 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 52 | | npncan3 8345 |
. . . . . . . . 9
⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
| 53 | 51, 52 | syl 14 |
. . . . . . . 8
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
| 54 | 53 | adantl 277 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
| 55 | 38, 54 | eqtr2d 2241 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁 − 𝑀) = ((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿))))) |
| 56 | 55 | oveq2d 5983 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (0..^(𝑁 − 𝑀)) = (0..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))))) |
| 57 | 56 | fneq2d 5384 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))) Fn (0..^(𝑁 − 𝑀)) ↔ ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))) Fn (0..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿))))))) |
| 58 | 22, 57 | mpbird 167 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))) Fn (0..^(𝑁 − 𝑀))) |
| 59 | | elfzoelz 10304 |
. . . . . 6
⊢ (𝑘 ∈ (0..^(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) |
| 60 | 59 | adantl 277 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → 𝑘 ∈ ℤ) |
| 61 | | 0zd 9419 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → 0 ∈
ℤ) |
| 62 | 9, 7 | zsubcld 9535 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐿 − 𝑀) ∈ ℤ) |
| 63 | 62 | adantr 276 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (𝐿 − 𝑀) ∈ ℤ) |
| 64 | | fzodcel 10310 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ ∧ (𝐿 −
𝑀) ∈ ℤ) →
DECID 𝑘
∈ (0..^(𝐿 −
𝑀))) |
| 65 | 60, 61, 63, 64 | syl3anc 1250 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → DECID 𝑘 ∈ (0..^(𝐿 − 𝑀))) |
| 66 | | exmiddc 838 |
. . . . 5
⊢
(DECID 𝑘 ∈ (0..^(𝐿 − 𝑀)) → (𝑘 ∈ (0..^(𝐿 − 𝑀)) ∨ ¬ 𝑘 ∈ (0..^(𝐿 − 𝑀)))) |
| 67 | | simprl 529 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 68 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → 𝑘 ∈ (0..^(𝑁 − 𝑀))) |
| 69 | 68 | anim2i 342 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) |
| 70 | 69 | ancomd 267 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (𝑘 ∈ (0..^(𝑁 − 𝑀)) ∧ 𝑘 ∈ (0..^(𝐿 − 𝑀)))) |
| 71 | 1 | pfxccatin12lem3 11223 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁 − 𝑀)) ∧ 𝑘 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐴 substr 〈𝑀, 𝐿〉)‘𝑘))) |
| 72 | 67, 70, 71 | sylc 62 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐴 substr 〈𝑀, 𝐿〉)‘𝑘)) |
| 73 | 11, 20 | jca 306 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉)) |
| 74 | 73 | ad2antrl 490 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉)) |
| 75 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → 𝑘 ∈ (0..^(𝐿 − 𝑀))) |
| 76 | 30 | oveq2d 5983 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉))) = (0..^(𝐿 − 𝑀))) |
| 77 | 76 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉))) = (0..^(𝐿 − 𝑀))) |
| 78 | 75, 77 | eleqtrrd 2287 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → 𝑘 ∈ (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉)))) |
| 79 | | df-3an 983 |
. . . . . . . . . 10
⊢ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉 ∧ 𝑘 ∈ (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉)))) ↔ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉) ∧ 𝑘 ∈ (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
| 80 | 74, 78, 79 | sylanbrc 417 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉 ∧ 𝑘 ∈ (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
| 81 | | ccatval1 11091 |
. . . . . . . . 9
⊢ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉 ∧ 𝑘 ∈ (0..^(♯‘(𝐴 substr 〈𝑀, 𝐿〉)))) → (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘) = ((𝐴 substr 〈𝑀, 𝐿〉)‘𝑘)) |
| 82 | 80, 81 | syl 14 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘) = ((𝐴 substr 〈𝑀, 𝐿〉)‘𝑘)) |
| 83 | 72, 82 | eqtr4d 2243 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘)) |
| 84 | 83 | ex 115 |
. . . . . 6
⊢ (𝑘 ∈ (0..^(𝐿 − 𝑀)) → ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘))) |
| 85 | | simprl 529 |
. . . . . . . . 9
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 86 | 68 | anim2i 342 |
. . . . . . . . . 10
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (¬ 𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) |
| 87 | 86 | ancomd 267 |
. . . . . . . . 9
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (𝑘 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿 − 𝑀)))) |
| 88 | 1 | pfxccatin12lem2 11222 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝑘 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))))) |
| 89 | 85, 87, 88 | sylc 62 |
. . . . . . . 8
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝑘 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
| 90 | 73 | ad2antrl 490 |
. . . . . . . . . 10
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉)) |
| 91 | | elfzuz 10178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ (ℤ≥‘𝐿)) |
| 92 | | eluzelz 9692 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝐿) → 𝑁 ∈ ℤ) |
| 93 | | id 19 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℤ) → (𝐿
∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈
ℤ)) |
| 94 | 93 | 3expia 1208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ))) |
| 95 | 94 | ancoms 268 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ))) |
| 96 | 95 | 3adant3 1020 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝑀
≤ 𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℤ))) |
| 97 | 39, 96 | sylbi 121 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ (0...𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ))) |
| 98 | 92, 97 | syl5com 29 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘𝐿) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ))) |
| 99 | 91, 98 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ))) |
| 100 | 99 | impcom 125 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ)) |
| 101 | 100 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ)) |
| 102 | 101 | ad2antrl 490 |
. . . . . . . . . . . 12
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℤ)) |
| 103 | | pfxccatin12lem4 11217 |
. . . . . . . . . . . 12
⊢ ((𝐿 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℤ) → ((𝑘
∈ (0..^(𝑁 −
𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿 − 𝑀))) → 𝑘 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
| 104 | 102, 87, 103 | sylc 62 |
. . . . . . . . . . 11
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → 𝑘 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
| 105 | 30, 38 | oveq12d 5985 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿))))) = ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
| 106 | 105 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿))))) = ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
| 107 | 104, 106 | eleqtrrd 2287 |
. . . . . . . . . 10
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → 𝑘 ∈ ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))))) |
| 108 | | df-3an 983 |
. . . . . . . . . 10
⊢ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉 ∧ 𝑘 ∈ ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))))) ↔ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉) ∧ 𝑘 ∈ ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿))))))) |
| 109 | 90, 107, 108 | sylanbrc 417 |
. . . . . . . . 9
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → ((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉 ∧ 𝑘 ∈ ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿))))))) |
| 110 | | ccatval2 11092 |
. . . . . . . . 9
⊢ (((𝐴 substr 〈𝑀, 𝐿〉) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁 − 𝐿)) ∈ Word 𝑉 ∧ 𝑘 ∈ ((♯‘(𝐴 substr 〈𝑀, 𝐿〉))..^((♯‘(𝐴 substr 〈𝑀, 𝐿〉)) + (♯‘(𝐵 prefix (𝑁 − 𝐿)))))) → (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝑘 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
| 111 | 109, 110 | syl 14 |
. . . . . . . 8
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝑘 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
| 112 | 89, 111 | eqtr4d 2243 |
. . . . . . 7
⊢ ((¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) ∧ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘)) |
| 113 | 112 | ex 115 |
. . . . . 6
⊢ (¬
𝑘 ∈ (0..^(𝐿 − 𝑀)) → ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘))) |
| 114 | 84, 113 | jaoi 718 |
. . . . 5
⊢ ((𝑘 ∈ (0..^(𝐿 − 𝑀)) ∨ ¬ 𝑘 ∈ (0..^(𝐿 − 𝑀))) → ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘))) |
| 115 | 66, 114 | syl 14 |
. . . 4
⊢
(DECID 𝑘 ∈ (0..^(𝐿 − 𝑀)) → ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘))) |
| 116 | 65, 115 | mpcom 36 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = (((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))‘𝑘)) |
| 117 | 4, 58, 116 | eqfnfvd 5703 |
. 2
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 118 | 117 | ex 115 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))) |