ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxccatin12 GIF version

Theorem pfxccatin12 11260
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by AV, 9-May-2020.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatin12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))

Proof of Theorem pfxccatin12
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 swrdccatin2.l . . . . 5 𝐿 = (♯‘𝐴)
21pfxccatin12lem2c 11257 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
3 swrdvalfn 11183 . . . 4 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
42, 3syl 14 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
5 simpll 527 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉)
6 elfzelz 10217 . . . . . . 7 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℤ)
76ad2antrl 490 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ ℤ)
8 elfzel1 10216 . . . . . . 7 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝐿 ∈ ℤ)
98ad2antll 491 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ ℤ)
10 swrdclg 11177 . . . . . 6 ((𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
115, 7, 9, 10syl3anc 1271 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
12 simplr 528 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉)
13 elfzle1 10219 . . . . . . . 8 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝐿𝑁)
14 elfzelz 10217 . . . . . . . . 9 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ)
15 znn0sub 9508 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 ↔ (𝑁𝐿) ∈ ℕ0))
168, 14, 15syl2anc 411 . . . . . . . 8 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿𝑁 ↔ (𝑁𝐿) ∈ ℕ0))
1713, 16mpbid 147 . . . . . . 7 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ ℕ0)
1817ad2antll 491 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ ℕ0)
19 pfxclg 11205 . . . . . 6 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ ℕ0) → (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉)
2012, 18, 19syl2anc 411 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉)
21 ccatvalfn 11131 . . . . 5 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿))))))
2211, 20, 21syl2anc 411 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿))))))
23 simprl 529 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿))
24 lencl 11070 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
25 nn0fz0 10311 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (0...(♯‘𝐴)))
2624, 25sylib 122 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
271, 26eqeltrid 2316 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
2827ad2antrr 488 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴)))
29 swrdlen 11179 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
305, 23, 28, 29syl3anc 1271 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
31 lencl 11070 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
3231nn0zd 9563 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
33 elfzmlbp 10324 . . . . . . . . . . 11 (((♯‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
3432, 33sylan 283 . . . . . . . . . 10 ((𝐵 ∈ Word 𝑉𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
35 pfxlen 11212 . . . . . . . . . 10 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) → (♯‘(𝐵 prefix (𝑁𝐿))) = (𝑁𝐿))
3634, 35syldan 282 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (♯‘(𝐵 prefix (𝑁𝐿))) = (𝑁𝐿))
3736ad2ant2l 508 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐵 prefix (𝑁𝐿))) = (𝑁𝐿))
3830, 37oveq12d 6018 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))) = ((𝐿𝑀) + (𝑁𝐿)))
39 elfz2nn0 10304 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
40 nn0cn 9375 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
4140ad2antll 491 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝐿 ∈ ℂ)
42 nn0cn 9375 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
4342ad2antrl 490 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝑀 ∈ ℂ)
44 zcn 9447 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4544adantr 276 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝑁 ∈ ℂ)
4641, 43, 453jca 1201 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
4746ex 115 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
4847, 14syl11 31 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
49483adant3 1041 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
5039, 49sylbi 121 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
5150imp 124 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
52 npncan3 8380 . . . . . . . . 9 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
5351, 52syl 14 . . . . . . . 8 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
5453adantl 277 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
5538, 54eqtr2d 2263 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝑀) = ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))))
5655oveq2d 6016 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (0..^(𝑁𝑀)) = (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿))))))
5756fneq2d 5411 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^(𝑁𝑀)) ↔ ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))))))
5822, 57mpbird 167 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^(𝑁𝑀)))
59 elfzoelz 10339 . . . . . 6 (𝑘 ∈ (0..^(𝑁𝑀)) → 𝑘 ∈ ℤ)
6059adantl 277 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ ℤ)
61 0zd 9454 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 0 ∈ ℤ)
629, 7zsubcld 9570 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐿𝑀) ∈ ℤ)
6362adantr 276 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝐿𝑀) ∈ ℤ)
64 fzodcel 10345 . . . . 5 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐿𝑀) ∈ ℤ) → DECID 𝑘 ∈ (0..^(𝐿𝑀)))
6560, 61, 63, 64syl3anc 1271 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → DECID 𝑘 ∈ (0..^(𝐿𝑀)))
66 exmiddc 841 . . . . 5 (DECID 𝑘 ∈ (0..^(𝐿𝑀)) → (𝑘 ∈ (0..^(𝐿𝑀)) ∨ ¬ 𝑘 ∈ (0..^(𝐿𝑀))))
67 simprl 529 . . . . . . . . 9 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
68 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ (0..^(𝑁𝑀)))
6968anim2i 342 . . . . . . . . . 10 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝐿𝑀)) ∧ 𝑘 ∈ (0..^(𝑁𝑀))))
7069ancomd 267 . . . . . . . . 9 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝑁𝑀)) ∧ 𝑘 ∈ (0..^(𝐿𝑀))))
711pfxccatin12lem3 11259 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ 𝑘 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘)))
7267, 70, 71sylc 62 . . . . . . . 8 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
7311, 20jca 306 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
7473ad2antrl 490 . . . . . . . . . 10 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
75 simpl 109 . . . . . . . . . . 11 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ (0..^(𝐿𝑀)))
7630oveq2d 6016 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))) = (0..^(𝐿𝑀)))
7776ad2antrl 490 . . . . . . . . . . 11 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))) = (0..^(𝐿𝑀)))
7875, 77eleqtrrd 2309 . . . . . . . . . 10 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
79 df-3an 1004 . . . . . . . . . 10 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))) ↔ (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉) ∧ 𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
8074, 78, 79sylanbrc 417 . . . . . . . . 9 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
81 ccatval1 11127 . . . . . . . . 9 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
8280, 81syl 14 . . . . . . . 8 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
8372, 82eqtr4d 2265 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘))
8483ex 115 . . . . . 6 (𝑘 ∈ (0..^(𝐿𝑀)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘)))
85 simprl 529 . . . . . . . . 9 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8668anim2i 342 . . . . . . . . . 10 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ 𝑘 ∈ (0..^(𝑁𝑀))))
8786ancomd 267 . . . . . . . . 9 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))))
881pfxccatin12lem2 11258 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
8985, 87, 88sylc 62 . . . . . . . 8 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
9073ad2antrl 490 . . . . . . . . . 10 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
91 elfzuz 10213 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ (ℤ𝐿))
92 eluzelz 9727 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝐿) → 𝑁 ∈ ℤ)
93 id 19 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
94933expia 1229 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
9594ancoms 268 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
96953adant3 1041 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
9739, 96sylbi 121 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
9892, 97syl5com 29 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝐿) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
9991, 98syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
10099impcom 125 . . . . . . . . . . . . . 14 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
101100adantl 277 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
102101ad2antrl 490 . . . . . . . . . . . 12 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
103 pfxccatin12lem4 11253 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → 𝑘 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
104102, 87, 103sylc 62 . . . . . . . . . . 11 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
10530, 38oveq12d 6018 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿))))) = ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
106105ad2antrl 490 . . . . . . . . . . 11 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿))))) = ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
107104, 106eleqtrrd 2309 . . . . . . . . . 10 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿))))))
108 df-3an 1004 . . . . . . . . . 10 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))))) ↔ (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉) ∧ 𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))))))
10990, 107, 108sylanbrc 417 . . . . . . . . 9 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))))))
110 ccatval2 11128 . . . . . . . . 9 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 prefix (𝑁𝐿)))))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
111109, 110syl 14 . . . . . . . 8 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
11289, 111eqtr4d 2265 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘))
113112ex 115 . . . . . 6 𝑘 ∈ (0..^(𝐿𝑀)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘)))
11484, 113jaoi 721 . . . . 5 ((𝑘 ∈ (0..^(𝐿𝑀)) ∨ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘)))
11566, 114syl 14 . . . 4 (DECID 𝑘 ∈ (0..^(𝐿𝑀)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘)))
11665, 115mpcom 36 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘))
1174, 58, 116eqfnfvd 5734 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
118117ex 115 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4082   Fn wfn 5312  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995   + caddc 7998  cle 8178  cmin 8313  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334  chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172   prefix cpfx 11199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173  df-pfx 11200
This theorem is referenced by:  pfxccat3  11261  pfxccatpfx2  11264  pfxccatin12d  11272
  Copyright terms: Public domain W3C validator