Step | Hyp | Ref
| Expression |
1 | | cjcl 10812 |
. . 3
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) ∈
ℂ) |
2 | | eqid 2170 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛))) |
3 | 2 | efcvg 11629 |
. . 3
⊢
((∗‘𝐴)
∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴))) |
4 | 1, 3 | syl 14 |
. 2
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴))) |
5 | | nn0uz 9521 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
6 | | eqid 2170 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
7 | 6 | efcvg 11629 |
. . 3
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
8 | | seqex 10403 |
. . . 4
⊢ seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V |
9 | 8 | a1i 9 |
. . 3
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V) |
10 | | 0zd 9224 |
. . 3
⊢ (𝐴 ∈ ℂ → 0 ∈
ℤ) |
11 | 6 | eftvalcn 11620 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
12 | | eftcl 11617 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
13 | 11, 12 | eqeltrd 2247 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
14 | 5, 10, 13 | serf 10430 |
. . . 4
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))):ℕ0⟶ℂ) |
15 | 14 | ffvelrnda 5631 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗) ∈ ℂ) |
16 | | addcl 7899 |
. . . . . 6
⊢ ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ) |
17 | 16 | adantl 275 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ (𝑘 ∈ ℂ
∧ 𝑚 ∈ ℂ))
→ (𝑘 + 𝑚) ∈
ℂ) |
18 | | simpl 108 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
19 | | elnn0uz 9524 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
20 | 19 | biimpri 132 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
21 | 18, 20, 13 | syl2an 287 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
22 | | simpr 109 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℕ0) |
23 | 22, 5 | eleqtrdi 2263 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
(ℤ≥‘0)) |
24 | | cjadd 10848 |
. . . . . 6
⊢ ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) →
(∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚))) |
25 | 24 | adantl 275 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ (𝑘 ∈ ℂ
∧ 𝑚 ∈ ℂ))
→ (∗‘(𝑘 +
𝑚)) =
((∗‘𝑘) +
(∗‘𝑚))) |
26 | | expcl 10494 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
27 | | faccl 10669 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
28 | 27 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ∈
ℕ) |
29 | 28 | nncnd 8892 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ∈
ℂ) |
30 | 28 | nnap0d 8924 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) #
0) |
31 | 26, 29, 30 | cjdivapd 10932 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝐴↑𝑘) / (!‘𝑘))) = ((∗‘(𝐴↑𝑘)) / (∗‘(!‘𝑘)))) |
32 | | cjexp 10857 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) |
33 | 28 | nnred 8891 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ∈
ℝ) |
34 | 33 | cjred 10935 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘(!‘𝑘)) = (!‘𝑘)) |
35 | 32, 34 | oveq12d 5871 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((∗‘(𝐴↑𝑘)) / (∗‘(!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
36 | 31, 35 | eqtrd 2203 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝐴↑𝑘) / (!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
37 | 11 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝑛
∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘)) = (∗‘((𝐴↑𝑘) / (!‘𝑘)))) |
38 | 2 | eftvalcn 11620 |
. . . . . . . 8
⊢
(((∗‘𝐴)
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
39 | 1, 38 | sylan 281 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
40 | 36, 37, 39 | 3eqtr4d 2213 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝑛
∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) |
41 | 18, 20, 40 | syl2an 287 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) |
42 | 20 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℕ0) |
43 | 1 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → (∗‘𝐴) ∈ ℂ) |
44 | 43, 42 | expcld 10609 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((∗‘𝐴)↑𝑘) ∈ ℂ) |
45 | 18, 20, 29 | syl2an 287 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → (!‘𝑘) ∈ ℂ) |
46 | 18, 20, 30 | syl2an 287 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → (!‘𝑘) # 0) |
47 | 44, 45, 46 | divclapd 8707 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → (((∗‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
48 | | oveq2 5861 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((∗‘𝐴)↑𝑛) = ((∗‘𝐴)↑𝑘)) |
49 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
50 | 48, 49 | oveq12d 5871 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (((∗‘𝐴)↑𝑛) / (!‘𝑛)) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
51 | 50, 2 | fvmptg 5572 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ (((∗‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
52 | 42, 47, 51 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
53 | 52, 47 | eqeltrd 2247 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
54 | 17, 21, 23, 25, 41, 53, 17 | seq3homo 10466 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗)) |
55 | 54 | eqcomd 2176 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗) = (∗‘(seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗))) |
56 | 5, 7, 9, 10, 15, 55 | climcj 11284 |
. 2
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) |
57 | | climuni 11256 |
. 2
⊢ ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)) ∧ seq0( + , (𝑛 ∈ ℕ0
↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
58 | 4, 56, 57 | syl2anc 409 |
1
⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |