ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredgreu GIF version

Theorem usgredgreu 15979
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredgreu ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑦,𝑌

Proof of Theorem usgredgreu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . 3 𝑉 = (Vtx‘𝐺)
2 usgredg3.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2usgredg4 15978 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
4 eqtr2 2228 . . . . 5 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥})
5 vex 2782 . . . . . 6 𝑦 ∈ V
6 vex 2782 . . . . . 6 𝑥 ∈ V
75, 6preqr2 3826 . . . . 5 ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥)
84, 7syl 14 . . . 4 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)
98a1i 9 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) ∧ (𝑦𝑉𝑥𝑉)) → (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))
109ralrimivva 2592 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∀𝑦𝑉𝑥𝑉 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))
11 preq2 3724 . . . 4 (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥})
1211eqeq2d 2221 . . 3 (𝑦 = 𝑥 → ((𝐸𝑋) = {𝑌, 𝑦} ↔ (𝐸𝑋) = {𝑌, 𝑥}))
1312reu4 2977 . 2 (∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ∧ ∀𝑦𝑉𝑥𝑉 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)))
143, 10, 13sylanbrc 417 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wral 2488  wrex 2489  ∃!wreu 2490  {cpr 3647  dom cdm 4696  cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-umgren 15859  df-usgren 15919
This theorem is referenced by:  usgredg2vlem1  15985  usgredg2vlem2  15986
  Copyright terms: Public domain W3C validator