![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4lt6 | Structured version Visualization version GIF version |
Description: 4 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
4lt6 | ⊢ 4 < 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4lt5 11622 | . 2 ⊢ 4 < 5 | |
2 | 5lt6 11626 | . 2 ⊢ 5 < 6 | |
3 | 4re 11523 | . . 3 ⊢ 4 ∈ ℝ | |
4 | 5re 11527 | . . 3 ⊢ 5 ∈ ℝ | |
5 | 6re 11531 | . . 3 ⊢ 6 ∈ ℝ | |
6 | 3, 4, 5 | lttri 10564 | . 2 ⊢ ((4 < 5 ∧ 5 < 6) → 4 < 6) |
7 | 1, 2, 6 | mp2an 680 | 1 ⊢ 4 < 6 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4925 < clt 10472 4c4 11495 5c5 11496 6c6 11497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 |
This theorem is referenced by: 3lt6 11628 bposlem6 25582 sgoldbeven3prm 43350 exple2lt6 43812 |
Copyright terms: Public domain | W3C validator |