| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr 11210 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: 1lt3 12314 2lt4 12316 1lt4 12317 3lt5 12319 2lt5 12320 1lt5 12321 4lt6 12323 3lt6 12324 2lt6 12325 1lt6 12326 5lt7 12328 4lt7 12329 3lt7 12330 2lt7 12331 1lt7 12332 6lt8 12334 5lt8 12335 4lt8 12336 3lt8 12337 2lt8 12338 1lt8 12339 7lt9 12341 6lt9 12342 5lt9 12343 4lt9 12344 3lt9 12345 2lt9 12346 1lt9 12347 8lt10 12741 7lt10 12742 6lt10 12743 5lt10 12744 4lt10 12745 3lt10 12746 2lt10 12747 1lt10 12748 sincos2sgn 16121 epos 16134 ene1 16137 dvdslelem 16238 psgnodpmr 21515 xrhmph 24861 vitalilem4 25528 pipos 26384 logi 26512 logneg 26513 asin1 26820 reasinsin 26822 atan1 26854 log2le1 26876 bposlem8 27218 bposlem9 27219 chebbnd1lem2 27397 chebbnd1lem3 27398 chebbnd1 27399 mulog2sumlem2 27462 pntibndlem1 27516 pntlemb 27524 pntlemk 27533 axlowdimlem16 28920 sgnnbi 32796 sgnpbi 32797 dp2ltc 32840 signswch 34528 hgt750lem 34618 hgt750lem2 34619 cnndvlem1 36510 bj-minftyccb 37198 bj-pinftynminfty 37200 irrdiff 37299 asindmre 37682 fdc 37724 lttrii 42229 sn-0ne2 42379 fourierdlem94 46182 fourierdlem102 46190 fourierdlem103 46191 fourierdlem104 46192 fourierdlem112 46200 fourierdlem113 46201 fourierdlem114 46202 fouriersw 46213 etransclem23 46239 |
| Copyright terms: Public domain | W3C validator |