| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr 11257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: 1lt3 12361 2lt4 12363 1lt4 12364 3lt5 12366 2lt5 12367 1lt5 12368 4lt6 12370 3lt6 12371 2lt6 12372 1lt6 12373 5lt7 12375 4lt7 12376 3lt7 12377 2lt7 12378 1lt7 12379 6lt8 12381 5lt8 12382 4lt8 12383 3lt8 12384 2lt8 12385 1lt8 12386 7lt9 12388 6lt9 12389 5lt9 12390 4lt9 12391 3lt9 12392 2lt9 12393 1lt9 12394 8lt10 12788 7lt10 12789 6lt10 12790 5lt10 12791 4lt10 12792 3lt10 12793 2lt10 12794 1lt10 12795 sincos2sgn 16169 epos 16182 ene1 16185 dvdslelem 16286 psgnodpmr 21506 xrhmph 24852 vitalilem4 25519 pipos 26375 logi 26503 logneg 26504 asin1 26811 reasinsin 26813 atan1 26845 log2le1 26867 bposlem8 27209 bposlem9 27210 chebbnd1lem2 27388 chebbnd1lem3 27389 chebbnd1 27390 mulog2sumlem2 27453 pntibndlem1 27507 pntlemb 27515 pntlemk 27524 axlowdimlem16 28891 sgnnbi 32770 sgnpbi 32771 dp2ltc 32814 signswch 34559 hgt750lem 34649 hgt750lem2 34650 cnndvlem1 36532 bj-minftyccb 37220 bj-pinftynminfty 37222 irrdiff 37321 asindmre 37704 fdc 37746 lttrii 42251 sn-0ne2 42401 fourierdlem94 46205 fourierdlem102 46213 fourierdlem103 46214 fourierdlem104 46215 fourierdlem112 46223 fourierdlem113 46224 fourierdlem114 46225 fouriersw 46236 etransclem23 46262 |
| Copyright terms: Public domain | W3C validator |