| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr 11196 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5093 ℝcr 11012 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 |
| This theorem is referenced by: 1lt3 12300 2lt4 12302 1lt4 12303 3lt5 12305 2lt5 12306 1lt5 12307 4lt6 12309 3lt6 12310 2lt6 12311 1lt6 12312 5lt7 12314 4lt7 12315 3lt7 12316 2lt7 12317 1lt7 12318 6lt8 12320 5lt8 12321 4lt8 12322 3lt8 12323 2lt8 12324 1lt8 12325 7lt9 12327 6lt9 12328 5lt9 12329 4lt9 12330 3lt9 12331 2lt9 12332 1lt9 12333 8lt10 12726 7lt10 12727 6lt10 12728 5lt10 12729 4lt10 12730 3lt10 12731 2lt10 12732 1lt10 12733 sincos2sgn 16105 epos 16118 ene1 16121 dvdslelem 16222 psgnodpmr 21529 xrhmph 24873 vitalilem4 25540 pipos 26396 logi 26524 logneg 26525 asin1 26832 reasinsin 26834 atan1 26866 log2le1 26888 bposlem8 27230 bposlem9 27231 chebbnd1lem2 27409 chebbnd1lem3 27410 chebbnd1 27411 mulog2sumlem2 27474 pntibndlem1 27528 pntlemb 27536 pntlemk 27545 axlowdimlem16 28937 sgnnbi 32826 sgnpbi 32827 dp2ltc 32874 signswch 34595 hgt750lem 34685 hgt750lem2 34686 cnndvlem1 36602 bj-minftyccb 37290 bj-pinftynminfty 37292 irrdiff 37391 asindmre 37763 fdc 37805 lttrii 42374 sn-0ne2 42524 fourierdlem94 46322 fourierdlem102 46330 fourierdlem103 46331 fourierdlem104 46332 fourierdlem112 46340 fourierdlem113 46341 fourierdlem114 46342 fouriersw 46353 etransclem23 46379 |
| Copyright terms: Public domain | W3C validator |