| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr 11250 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: 1lt3 12354 2lt4 12356 1lt4 12357 3lt5 12359 2lt5 12360 1lt5 12361 4lt6 12363 3lt6 12364 2lt6 12365 1lt6 12366 5lt7 12368 4lt7 12369 3lt7 12370 2lt7 12371 1lt7 12372 6lt8 12374 5lt8 12375 4lt8 12376 3lt8 12377 2lt8 12378 1lt8 12379 7lt9 12381 6lt9 12382 5lt9 12383 4lt9 12384 3lt9 12385 2lt9 12386 1lt9 12387 8lt10 12781 7lt10 12782 6lt10 12783 5lt10 12784 4lt10 12785 3lt10 12786 2lt10 12787 1lt10 12788 sincos2sgn 16162 epos 16175 ene1 16178 dvdslelem 16279 psgnodpmr 21499 xrhmph 24845 vitalilem4 25512 pipos 26368 logi 26496 logneg 26497 asin1 26804 reasinsin 26806 atan1 26838 log2le1 26860 bposlem8 27202 bposlem9 27203 chebbnd1lem2 27381 chebbnd1lem3 27382 chebbnd1 27383 mulog2sumlem2 27446 pntibndlem1 27500 pntlemb 27508 pntlemk 27517 axlowdimlem16 28884 sgnnbi 32763 sgnpbi 32764 dp2ltc 32807 signswch 34552 hgt750lem 34642 hgt750lem2 34643 cnndvlem1 36525 bj-minftyccb 37213 bj-pinftynminfty 37215 irrdiff 37314 asindmre 37697 fdc 37739 lttrii 42244 sn-0ne2 42394 fourierdlem94 46198 fourierdlem102 46206 fourierdlem103 46207 fourierdlem104 46208 fourierdlem112 46216 fourierdlem113 46217 fourierdlem114 46218 fouriersw 46229 etransclem23 46255 |
| Copyright terms: Public domain | W3C validator |