| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr 11311 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: 1lt3 12413 2lt4 12415 1lt4 12416 3lt5 12418 2lt5 12419 1lt5 12420 4lt6 12422 3lt6 12423 2lt6 12424 1lt6 12425 5lt7 12427 4lt7 12428 3lt7 12429 2lt7 12430 1lt7 12431 6lt8 12433 5lt8 12434 4lt8 12435 3lt8 12436 2lt8 12437 1lt8 12438 7lt9 12440 6lt9 12441 5lt9 12442 4lt9 12443 3lt9 12444 2lt9 12445 1lt9 12446 8lt10 12840 7lt10 12841 6lt10 12842 5lt10 12843 4lt10 12844 3lt10 12845 2lt10 12846 1lt10 12847 sincos2sgn 16212 epos 16225 ene1 16228 dvdslelem 16328 psgnodpmr 21550 xrhmph 24896 vitalilem4 25564 pipos 26420 logi 26548 logneg 26549 asin1 26856 reasinsin 26858 atan1 26890 log2le1 26912 bposlem8 27254 bposlem9 27255 chebbnd1lem2 27433 chebbnd1lem3 27434 chebbnd1 27435 mulog2sumlem2 27498 pntibndlem1 27552 pntlemb 27560 pntlemk 27569 axlowdimlem16 28936 sgnnbi 32817 sgnpbi 32818 dp2ltc 32861 signswch 34593 hgt750lem 34683 hgt750lem2 34684 cnndvlem1 36555 bj-minftyccb 37243 bj-pinftynminfty 37245 irrdiff 37344 asindmre 37727 fdc 37769 lttrii 42307 sn-0ne2 42449 fourierdlem94 46229 fourierdlem102 46237 fourierdlem103 46238 fourierdlem104 46239 fourierdlem112 46247 fourierdlem113 46248 fourierdlem114 46249 fouriersw 46260 etransclem23 46286 |
| Copyright terms: Public domain | W3C validator |