| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr 11186 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 ℝcr 11002 < clt 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 |
| This theorem is referenced by: 1lt3 12290 2lt4 12292 1lt4 12293 3lt5 12295 2lt5 12296 1lt5 12297 4lt6 12299 3lt6 12300 2lt6 12301 1lt6 12302 5lt7 12304 4lt7 12305 3lt7 12306 2lt7 12307 1lt7 12308 6lt8 12310 5lt8 12311 4lt8 12312 3lt8 12313 2lt8 12314 1lt8 12315 7lt9 12317 6lt9 12318 5lt9 12319 4lt9 12320 3lt9 12321 2lt9 12322 1lt9 12323 8lt10 12717 7lt10 12718 6lt10 12719 5lt10 12720 4lt10 12721 3lt10 12722 2lt10 12723 1lt10 12724 sincos2sgn 16100 epos 16113 ene1 16116 dvdslelem 16217 psgnodpmr 21525 xrhmph 24870 vitalilem4 25537 pipos 26393 logi 26521 logneg 26522 asin1 26829 reasinsin 26831 atan1 26863 log2le1 26885 bposlem8 27227 bposlem9 27228 chebbnd1lem2 27406 chebbnd1lem3 27407 chebbnd1 27408 mulog2sumlem2 27471 pntibndlem1 27525 pntlemb 27533 pntlemk 27542 axlowdimlem16 28933 sgnnbi 32816 sgnpbi 32817 dp2ltc 32862 signswch 34569 hgt750lem 34659 hgt750lem2 34660 cnndvlem1 36570 bj-minftyccb 37258 bj-pinftynminfty 37260 irrdiff 37359 asindmre 37742 fdc 37784 lttrii 42288 sn-0ne2 42438 fourierdlem94 46237 fourierdlem102 46245 fourierdlem103 46246 fourierdlem104 46247 fourierdlem112 46255 fourierdlem113 46256 fourierdlem114 46257 fouriersw 46268 etransclem23 46294 |
| Copyright terms: Public domain | W3C validator |