![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 11366 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1461 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: 1lt3 12466 2lt4 12468 1lt4 12469 3lt5 12471 2lt5 12472 1lt5 12473 4lt6 12475 3lt6 12476 2lt6 12477 1lt6 12478 5lt7 12480 4lt7 12481 3lt7 12482 2lt7 12483 1lt7 12484 6lt8 12486 5lt8 12487 4lt8 12488 3lt8 12489 2lt8 12490 1lt8 12491 7lt9 12493 6lt9 12494 5lt9 12495 4lt9 12496 3lt9 12497 2lt9 12498 1lt9 12499 8lt10 12890 7lt10 12891 6lt10 12892 5lt10 12893 4lt10 12894 3lt10 12895 2lt10 12896 1lt10 12897 sincos2sgn 16242 epos 16255 ene1 16258 dvdslelem 16357 oppcbasOLD 17778 sralemOLD 21199 zlmlemOLD 21551 psgnodpmr 21631 tnglemOLD 24675 xrhmph 24997 vitalilem4 25665 pipos 26520 logi 26647 logneg 26648 asin1 26955 reasinsin 26957 atan1 26989 log2le1 27011 bposlem8 27353 bposlem9 27354 chebbnd1lem2 27532 chebbnd1lem3 27533 chebbnd1 27534 mulog2sumlem2 27597 pntibndlem1 27651 pntlemb 27659 pntlemk 27668 ttglemOLD 28904 cchhllemOLD 28920 axlowdimlem16 28990 dp2ltc 32851 sgnnbi 34510 sgnpbi 34511 signswch 34538 hgt750lem 34628 hgt750lem2 34629 cnndvlem1 36503 bj-minftyccb 37191 bj-pinftynminfty 37193 irrdiff 37292 asindmre 37663 fdc 37705 lttrii 42251 sn-0ne2 42382 fourierdlem94 46121 fourierdlem102 46129 fourierdlem103 46130 fourierdlem104 46131 fourierdlem112 46139 fourierdlem113 46140 fourierdlem114 46141 fouriersw 46152 etransclem23 46178 |
Copyright terms: Public domain | W3C validator |