Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 10982 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: 1lt3 12076 2lt4 12078 1lt4 12079 3lt5 12081 2lt5 12082 1lt5 12083 4lt6 12085 3lt6 12086 2lt6 12087 1lt6 12088 5lt7 12090 4lt7 12091 3lt7 12092 2lt7 12093 1lt7 12094 6lt8 12096 5lt8 12097 4lt8 12098 3lt8 12099 2lt8 12100 1lt8 12101 7lt9 12103 6lt9 12104 5lt9 12105 4lt9 12106 3lt9 12107 2lt9 12108 1lt9 12109 8lt10 12498 7lt10 12499 6lt10 12500 5lt10 12501 4lt10 12502 3lt10 12503 2lt10 12504 1lt10 12505 sincos2sgn 15831 epos 15844 ene1 15847 dvdslelem 15946 oppcbasOLD 17346 sralemOLD 20355 zlmlemOLD 20631 psgnodpmr 20707 tnglemOLD 23703 xrhmph 24016 vitalilem4 24680 pipos 25522 logneg 25648 asin1 25949 reasinsin 25951 atan1 25983 log2le1 26005 bposlem8 26344 bposlem9 26345 chebbnd1lem2 26523 chebbnd1lem3 26524 chebbnd1 26525 mulog2sumlem2 26588 pntibndlem1 26642 pntlemb 26650 pntlemk 26659 ttglemOLD 27142 cchhllemOLD 27158 axlowdimlem16 27228 dp2ltc 31063 sgnnbi 32412 sgnpbi 32413 signswch 32440 hgt750lem 32531 hgt750lem2 32532 logi 33606 cnndvlem1 34644 bj-minftyccb 35323 bj-pinftynminfty 35325 irrdiff 35424 asindmre 35787 fdc 35830 sn-0ne2 40310 fourierdlem94 43631 fourierdlem102 43639 fourierdlem103 43640 fourierdlem104 43641 fourierdlem112 43649 fourierdlem113 43650 fourierdlem114 43651 fouriersw 43662 etransclem23 43688 |
Copyright terms: Public domain | W3C validator |