Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 11052 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 class class class wbr 5079 ℝcr 10871 < clt 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-pre-lttrn 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 |
This theorem is referenced by: 1lt3 12146 2lt4 12148 1lt4 12149 3lt5 12151 2lt5 12152 1lt5 12153 4lt6 12155 3lt6 12156 2lt6 12157 1lt6 12158 5lt7 12160 4lt7 12161 3lt7 12162 2lt7 12163 1lt7 12164 6lt8 12166 5lt8 12167 4lt8 12168 3lt8 12169 2lt8 12170 1lt8 12171 7lt9 12173 6lt9 12174 5lt9 12175 4lt9 12176 3lt9 12177 2lt9 12178 1lt9 12179 8lt10 12568 7lt10 12569 6lt10 12570 5lt10 12571 4lt10 12572 3lt10 12573 2lt10 12574 1lt10 12575 sincos2sgn 15901 epos 15914 ene1 15917 dvdslelem 16016 oppcbasOLD 17427 sralemOLD 20438 zlmlemOLD 20717 psgnodpmr 20793 tnglemOLD 23795 xrhmph 24108 vitalilem4 24773 pipos 25615 logneg 25741 asin1 26042 reasinsin 26044 atan1 26076 log2le1 26098 bposlem8 26437 bposlem9 26438 chebbnd1lem2 26616 chebbnd1lem3 26617 chebbnd1 26618 mulog2sumlem2 26681 pntibndlem1 26735 pntlemb 26743 pntlemk 26752 ttglemOLD 27237 cchhllemOLD 27253 axlowdimlem16 27323 dp2ltc 31157 sgnnbi 32508 sgnpbi 32509 signswch 32536 hgt750lem 32627 hgt750lem2 32628 logi 33696 cnndvlem1 34713 bj-minftyccb 35392 bj-pinftynminfty 35394 irrdiff 35493 asindmre 35856 fdc 35899 sn-0ne2 40386 fourierdlem94 43712 fourierdlem102 43720 fourierdlem103 43721 fourierdlem104 43722 fourierdlem112 43730 fourierdlem113 43731 fourierdlem114 43732 fouriersw 43743 etransclem23 43769 |
Copyright terms: Public domain | W3C validator |