![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 11334 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: 1lt3 12436 2lt4 12438 1lt4 12439 3lt5 12441 2lt5 12442 1lt5 12443 4lt6 12445 3lt6 12446 2lt6 12447 1lt6 12448 5lt7 12450 4lt7 12451 3lt7 12452 2lt7 12453 1lt7 12454 6lt8 12456 5lt8 12457 4lt8 12458 3lt8 12459 2lt8 12460 1lt8 12461 7lt9 12463 6lt9 12464 5lt9 12465 4lt9 12466 3lt9 12467 2lt9 12468 1lt9 12469 8lt10 12862 7lt10 12863 6lt10 12864 5lt10 12865 4lt10 12866 3lt10 12867 2lt10 12868 1lt10 12869 sincos2sgn 16226 epos 16239 ene1 16242 dvdslelem 16342 oppcbasOLD 17764 sralemOLD 21193 zlmlemOLD 21545 psgnodpmr 21625 tnglemOLD 24669 xrhmph 24991 vitalilem4 25659 pipos 26516 logi 26643 logneg 26644 asin1 26951 reasinsin 26953 atan1 26985 log2le1 27007 bposlem8 27349 bposlem9 27350 chebbnd1lem2 27528 chebbnd1lem3 27529 chebbnd1 27530 mulog2sumlem2 27593 pntibndlem1 27647 pntlemb 27655 pntlemk 27664 ttglemOLD 28900 cchhllemOLD 28916 axlowdimlem16 28986 dp2ltc 32853 sgnnbi 34526 sgnpbi 34527 signswch 34554 hgt750lem 34644 hgt750lem2 34645 cnndvlem1 36519 bj-minftyccb 37207 bj-pinftynminfty 37209 irrdiff 37308 asindmre 37689 fdc 37731 lttrii 42275 sn-0ne2 42412 fourierdlem94 46155 fourierdlem102 46163 fourierdlem103 46164 fourierdlem104 46165 fourierdlem112 46173 fourierdlem113 46174 fourierdlem114 46175 fouriersw 46186 etransclem23 46212 |
Copyright terms: Public domain | W3C validator |