Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 11051 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: 1lt3 12146 2lt4 12148 1lt4 12149 3lt5 12151 2lt5 12152 1lt5 12153 4lt6 12155 3lt6 12156 2lt6 12157 1lt6 12158 5lt7 12160 4lt7 12161 3lt7 12162 2lt7 12163 1lt7 12164 6lt8 12166 5lt8 12167 4lt8 12168 3lt8 12169 2lt8 12170 1lt8 12171 7lt9 12173 6lt9 12174 5lt9 12175 4lt9 12176 3lt9 12177 2lt9 12178 1lt9 12179 8lt10 12569 7lt10 12570 6lt10 12571 5lt10 12572 4lt10 12573 3lt10 12574 2lt10 12575 1lt10 12576 sincos2sgn 15903 epos 15916 ene1 15919 dvdslelem 16018 oppcbasOLD 17429 sralemOLD 20440 zlmlemOLD 20719 psgnodpmr 20795 tnglemOLD 23797 xrhmph 24110 vitalilem4 24775 pipos 25617 logneg 25743 asin1 26044 reasinsin 26046 atan1 26078 log2le1 26100 bposlem8 26439 bposlem9 26440 chebbnd1lem2 26618 chebbnd1lem3 26619 chebbnd1 26620 mulog2sumlem2 26683 pntibndlem1 26737 pntlemb 26745 pntlemk 26754 ttglemOLD 27239 cchhllemOLD 27255 axlowdimlem16 27325 dp2ltc 31161 sgnnbi 32512 sgnpbi 32513 signswch 32540 hgt750lem 32631 hgt750lem2 32632 logi 33700 cnndvlem1 34717 bj-minftyccb 35396 bj-pinftynminfty 35398 irrdiff 35497 asindmre 35860 fdc 35903 sn-0ne2 40389 fourierdlem94 43741 fourierdlem102 43749 fourierdlem103 43750 fourierdlem104 43751 fourierdlem112 43759 fourierdlem113 43760 fourierdlem114 43761 fouriersw 43772 etransclem23 43798 |
Copyright terms: Public domain | W3C validator |