MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnr Structured version   Visualization version   GIF version

Theorem mulcmpblnr 10668
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))

Proof of Theorem mulcmpblnr
StepHypRef Expression
1 mulcmpblnrlem 10667 . . 3 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
2 mulclpr 10617 . . . . . 6 ((𝐷P𝐹P) → (𝐷 ·P 𝐹) ∈ P)
32ad2ant2lr 748 . . . . 5 (((𝐶P𝐷P) ∧ (𝐹P𝐺P)) → (𝐷 ·P 𝐹) ∈ P)
43ad2ant2lr 748 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐹) ∈ P)
5 simplll 775 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐴P)
6 simprll 779 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐹P)
7 mulclpr 10617 . . . . . . 7 ((𝐴P𝐹P) → (𝐴 ·P 𝐹) ∈ P)
85, 6, 7syl2anc 587 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐹) ∈ P)
9 simpllr 776 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐵P)
10 simprlr 780 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐺P)
11 mulclpr 10617 . . . . . . 7 ((𝐵P𝐺P) → (𝐵 ·P 𝐺) ∈ P)
129, 10, 11syl2anc 587 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐺) ∈ P)
13 addclpr 10615 . . . . . 6 (((𝐴 ·P 𝐹) ∈ P ∧ (𝐵 ·P 𝐺) ∈ P) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
148, 12, 13syl2anc 587 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
15 simplrl 777 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐶P)
16 simprrr 782 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑆P)
17 mulclpr 10617 . . . . . . 7 ((𝐶P𝑆P) → (𝐶 ·P 𝑆) ∈ P)
1815, 16, 17syl2anc 587 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑆) ∈ P)
19 simplrr 778 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐷P)
20 simprrl 781 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑅P)
21 mulclpr 10617 . . . . . . 7 ((𝐷P𝑅P) → (𝐷 ·P 𝑅) ∈ P)
2219, 20, 21syl2anc 587 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑅) ∈ P)
23 addclpr 10615 . . . . . 6 (((𝐶 ·P 𝑆) ∈ P ∧ (𝐷 ·P 𝑅) ∈ P) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
2418, 22, 23syl2anc 587 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
25 addclpr 10615 . . . . 5 ((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
2614, 24, 25syl2anc 587 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
27 addcanpr 10643 . . . 4 (((𝐷 ·P 𝐹) ∈ P ∧ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
284, 26, 27syl2anc 587 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
291, 28syl5 34 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
30 mulclpr 10617 . . . . 5 ((𝐴P𝐺P) → (𝐴 ·P 𝐺) ∈ P)
31 mulclpr 10617 . . . . 5 ((𝐵P𝐹P) → (𝐵 ·P 𝐹) ∈ P)
32 addclpr 10615 . . . . 5 (((𝐴 ·P 𝐺) ∈ P ∧ (𝐵 ·P 𝐹) ∈ P) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
3330, 31, 32syl2an 599 . . . 4 (((𝐴P𝐺P) ∧ (𝐵P𝐹P)) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
345, 10, 9, 6, 33syl22anc 839 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
35 mulclpr 10617 . . . . 5 ((𝐶P𝑅P) → (𝐶 ·P 𝑅) ∈ P)
36 mulclpr 10617 . . . . 5 ((𝐷P𝑆P) → (𝐷 ·P 𝑆) ∈ P)
37 addclpr 10615 . . . . 5 (((𝐶 ·P 𝑅) ∈ P ∧ (𝐷 ·P 𝑆) ∈ P) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3835, 36, 37syl2an 599 . . . 4 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3915, 20, 19, 16, 38syl22anc 839 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
40 enrbreq 10662 . . 3 (((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P) ∧ (((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4114, 34, 39, 24, 40syl22anc 839 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4229, 41sylibrd 262 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  cop 4537   class class class wbr 5043  (class class class)co 7202  Pcnp 10456   +P cpp 10458   ·P cmp 10459   ~R cer 10461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-omul 8196  df-er 8380  df-ni 10469  df-pli 10470  df-mi 10471  df-lti 10472  df-plpq 10505  df-mpq 10506  df-ltpq 10507  df-enq 10508  df-nq 10509  df-erq 10510  df-plq 10511  df-mq 10512  df-1nq 10513  df-rq 10514  df-ltnq 10515  df-np 10578  df-plp 10580  df-mp 10581  df-ltp 10582  df-enr 10652
This theorem is referenced by:  mulsrmo  10671
  Copyright terms: Public domain W3C validator