MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnr Structured version   Visualization version   GIF version

Theorem mulcmpblnr 11068
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnr ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (((๐ด +P ๐ท) = (๐ต +P ๐ถ) โˆง (๐น +P ๐‘†) = (๐บ +P ๐‘…)) โ†’ โŸจ((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)), ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น))โŸฉ ~R โŸจ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)), ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))โŸฉ))

Proof of Theorem mulcmpblnr
StepHypRef Expression
1 mulcmpblnrlem 11067 . . 3 (((๐ด +P ๐ท) = (๐ต +P ๐ถ) โˆง (๐น +P ๐‘†) = (๐บ +P ๐‘…)) โ†’ ((๐ท ยทP ๐น) +P (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)))) = ((๐ท ยทP ๐น) +P (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))))
2 mulclpr 11017 . . . . . 6 ((๐ท โˆˆ P โˆง ๐น โˆˆ P) โ†’ (๐ท ยทP ๐น) โˆˆ P)
32ad2ant2lr 745 . . . . 5 (((๐ถ โˆˆ P โˆง ๐ท โˆˆ P) โˆง (๐น โˆˆ P โˆง ๐บ โˆˆ P)) โ†’ (๐ท ยทP ๐น) โˆˆ P)
43ad2ant2lr 745 . . . 4 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (๐ท ยทP ๐น) โˆˆ P)
5 simplll 772 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐ด โˆˆ P)
6 simprll 776 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐น โˆˆ P)
7 mulclpr 11017 . . . . . . 7 ((๐ด โˆˆ P โˆง ๐น โˆˆ P) โ†’ (๐ด ยทP ๐น) โˆˆ P)
85, 6, 7syl2anc 583 . . . . . 6 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (๐ด ยทP ๐น) โˆˆ P)
9 simpllr 773 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐ต โˆˆ P)
10 simprlr 777 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐บ โˆˆ P)
11 mulclpr 11017 . . . . . . 7 ((๐ต โˆˆ P โˆง ๐บ โˆˆ P) โ†’ (๐ต ยทP ๐บ) โˆˆ P)
129, 10, 11syl2anc 583 . . . . . 6 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (๐ต ยทP ๐บ) โˆˆ P)
13 addclpr 11015 . . . . . 6 (((๐ด ยทP ๐น) โˆˆ P โˆง (๐ต ยทP ๐บ) โˆˆ P) โ†’ ((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) โˆˆ P)
148, 12, 13syl2anc 583 . . . . 5 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) โˆˆ P)
15 simplrl 774 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐ถ โˆˆ P)
16 simprrr 779 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐‘† โˆˆ P)
17 mulclpr 11017 . . . . . . 7 ((๐ถ โˆˆ P โˆง ๐‘† โˆˆ P) โ†’ (๐ถ ยทP ๐‘†) โˆˆ P)
1815, 16, 17syl2anc 583 . . . . . 6 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (๐ถ ยทP ๐‘†) โˆˆ P)
19 simplrr 775 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐ท โˆˆ P)
20 simprrl 778 . . . . . . 7 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ๐‘… โˆˆ P)
21 mulclpr 11017 . . . . . . 7 ((๐ท โˆˆ P โˆง ๐‘… โˆˆ P) โ†’ (๐ท ยทP ๐‘…) โˆˆ P)
2219, 20, 21syl2anc 583 . . . . . 6 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (๐ท ยทP ๐‘…) โˆˆ P)
23 addclpr 11015 . . . . . 6 (((๐ถ ยทP ๐‘†) โˆˆ P โˆง (๐ท ยทP ๐‘…) โˆˆ P) โ†’ ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)) โˆˆ P)
2418, 22, 23syl2anc 583 . . . . 5 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)) โˆˆ P)
25 addclpr 11015 . . . . 5 ((((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) โˆˆ P โˆง ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)) โˆˆ P) โ†’ (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) โˆˆ P)
2614, 24, 25syl2anc 583 . . . 4 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) โˆˆ P)
27 addcanpr 11043 . . . 4 (((๐ท ยทP ๐น) โˆˆ P โˆง (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) โˆˆ P) โ†’ (((๐ท ยทP ๐น) +P (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)))) = ((๐ท ยทP ๐น) +P (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))) โ†’ (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) = (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))))
284, 26, 27syl2anc 583 . . 3 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (((๐ท ยทP ๐น) +P (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)))) = ((๐ท ยทP ๐น) +P (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))) โ†’ (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) = (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))))
291, 28syl5 34 . 2 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (((๐ด +P ๐ท) = (๐ต +P ๐ถ) โˆง (๐น +P ๐‘†) = (๐บ +P ๐‘…)) โ†’ (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) = (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))))
30 mulclpr 11017 . . . . 5 ((๐ด โˆˆ P โˆง ๐บ โˆˆ P) โ†’ (๐ด ยทP ๐บ) โˆˆ P)
31 mulclpr 11017 . . . . 5 ((๐ต โˆˆ P โˆง ๐น โˆˆ P) โ†’ (๐ต ยทP ๐น) โˆˆ P)
32 addclpr 11015 . . . . 5 (((๐ด ยทP ๐บ) โˆˆ P โˆง (๐ต ยทP ๐น) โˆˆ P) โ†’ ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) โˆˆ P)
3330, 31, 32syl2an 595 . . . 4 (((๐ด โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐ต โˆˆ P โˆง ๐น โˆˆ P)) โ†’ ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) โˆˆ P)
345, 10, 9, 6, 33syl22anc 836 . . 3 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) โˆˆ P)
35 mulclpr 11017 . . . . 5 ((๐ถ โˆˆ P โˆง ๐‘… โˆˆ P) โ†’ (๐ถ ยทP ๐‘…) โˆˆ P)
36 mulclpr 11017 . . . . 5 ((๐ท โˆˆ P โˆง ๐‘† โˆˆ P) โ†’ (๐ท ยทP ๐‘†) โˆˆ P)
37 addclpr 11015 . . . . 5 (((๐ถ ยทP ๐‘…) โˆˆ P โˆง (๐ท ยทP ๐‘†) โˆˆ P) โ†’ ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)) โˆˆ P)
3835, 36, 37syl2an 595 . . . 4 (((๐ถ โˆˆ P โˆง ๐‘… โˆˆ P) โˆง (๐ท โˆˆ P โˆง ๐‘† โˆˆ P)) โ†’ ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)) โˆˆ P)
3915, 20, 19, 16, 38syl22anc 836 . . 3 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)) โˆˆ P)
40 enrbreq 11062 . . 3 (((((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) โˆˆ P โˆง ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) โˆˆ P) โˆง (((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)) โˆˆ P โˆง ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…)) โˆˆ P)) โ†’ (โŸจ((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)), ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น))โŸฉ ~R โŸจ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)), ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))โŸฉ โ†” (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) = (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))))
4114, 34, 39, 24, 40syl22anc 836 . 2 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (โŸจ((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)), ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น))โŸฉ ~R โŸจ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)), ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))โŸฉ โ†” (((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)) +P ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))) = (((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น)) +P ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)))))
4229, 41sylibrd 259 1 ((((๐ด โˆˆ P โˆง ๐ต โˆˆ P) โˆง (๐ถ โˆˆ P โˆง ๐ท โˆˆ P)) โˆง ((๐น โˆˆ P โˆง ๐บ โˆˆ P) โˆง (๐‘… โˆˆ P โˆง ๐‘† โˆˆ P))) โ†’ (((๐ด +P ๐ท) = (๐ต +P ๐ถ) โˆง (๐น +P ๐‘†) = (๐บ +P ๐‘…)) โ†’ โŸจ((๐ด ยทP ๐น) +P (๐ต ยทP ๐บ)), ((๐ด ยทP ๐บ) +P (๐ต ยทP ๐น))โŸฉ ~R โŸจ((๐ถ ยทP ๐‘…) +P (๐ท ยทP ๐‘†)), ((๐ถ ยทP ๐‘†) +P (๐ท ยทP ๐‘…))โŸฉ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  โŸจcop 4629   class class class wbr 5141  (class class class)co 7405  Pcnp 10856   +P cpp 10858   ยทP cmp 10859   ~R cer 10861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-omul 8472  df-er 8705  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-mpq 10906  df-ltpq 10907  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-mq 10912  df-1nq 10913  df-rq 10914  df-ltnq 10915  df-np 10978  df-plp 10980  df-mp 10981  df-ltp 10982  df-enr 11052
This theorem is referenced by:  mulsrmo  11071
  Copyright terms: Public domain W3C validator