MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumconst Structured version   Visualization version   GIF version

Theorem fsumconst 15804
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fsumconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mul02 11411 . . . . 5 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
21adantl 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
32eqcomd 2741 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 0 = (0 · 𝐵))
4 sumeq1 15703 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
5 sum0 15735 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
64, 5eqtrdi 2786 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
7 fveq2 6875 . . . . . 6 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
8 hash0 14383 . . . . . 6 (♯‘∅) = 0
97, 8eqtrdi 2786 . . . . 5 (𝐴 = ∅ → (♯‘𝐴) = 0)
109oveq1d 7418 . . . 4 (𝐴 = ∅ → ((♯‘𝐴) · 𝐵) = (0 · 𝐵))
116, 10eqeq12d 2751 . . 3 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵) ↔ 0 = (0 · 𝐵)))
123, 11syl5ibrcom 247 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
13 eqidd 2736 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 770 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
15 simprr 772 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
16 simpllr 775 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐵 ∈ ℂ)
18 elfznn 13568 . . . . . . . 8 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
19 fvconst2g 7193 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2017, 18, 19syl2an 596 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2113, 14, 15, 16, 20fsum 15734 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)))
22 ser1const 14074 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵))
2322ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵))
2421, 23eqtrd 2770 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
2524expr 456 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
2625exlimdv 1933 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
2726expimpd 453 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
28 fz1f1o 15724 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
2928adantr 480 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3012, 27, 29mpjaod 860 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  c0 4308  {csn 4601   × cxp 5652  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  Fincfn 8957  cc 11125  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  cn 12238  ...cfz 13522  seqcseq 14017  chash 14346  Σcsu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701
This theorem is referenced by:  fsumdifsnconst  15805  o1fsum  15827  hashiun  15836  hash2iun1dif1  15838  climcndslem1  15863  climcndslem2  15864  harmonic  15873  mertenslem1  15898  sumhash  16914  cshwshashnsame  17121  lagsubg2  19175  sylow2a  19598  lebnumlem3  24911  uniioombllem4  25537  birthdaylem2  26912  basellem8  27048  0sgm  27104  musum  27151  chtleppi  27171  vmasum  27177  logfac2  27178  chpval2  27179  chpchtsum  27180  chpub  27181  logfaclbnd  27183  dchrsum2  27229  sumdchr2  27231  lgsquadlem1  27341  chebbnd1lem1  27430  chtppilimlem1  27434  dchrmusum2  27455  dchrisum0flblem1  27469  rpvmasum2  27473  dchrisum0lem2a  27478  mudivsum  27491  mulogsumlem  27492  selberglem2  27507  pntlemj  27564  rusgrnumwwlks  29902  fusgrhashclwwlkn  30006  fusgreghash2wsp  30265  numclwwlk6  30317  reprlt  34597  hashreprin  34598  reprgt  34599  hgt750lema  34635  rrndstprj2  37801  lcmineqlem17  42004  sticksstones10  42114  sticksstones12a  42116  fz1sumconst  42305  fltnltalem  42632  stoweidlem11  45988  stoweidlem26  46003  stoweidlem38  46015  dirkertrigeq  46078  fourierdlem73  46156  etransclem32  46243  rrndistlt  46267  sge0rpcpnf  46398  hoiqssbllem2  46600  nn0mulfsum  48552  amgmlemALT  49615
  Copyright terms: Public domain W3C validator