![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumconst | Structured version Visualization version GIF version |
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul02 10665 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
3 | 2 | eqcomd 2801 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 0 = (0 · 𝐵)) |
4 | sumeq1 14879 | . . . . 5 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
5 | sum0 14911 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
6 | 4, 5 | syl6eq 2847 | . . . 4 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
7 | fveq2 6538 | . . . . . 6 ⊢ (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅)) | |
8 | hash0 13578 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
9 | 7, 8 | syl6eq 2847 | . . . . 5 ⊢ (𝐴 = ∅ → (♯‘𝐴) = 0) |
10 | 9 | oveq1d 7031 | . . . 4 ⊢ (𝐴 = ∅ → ((♯‘𝐴) · 𝐵) = (0 · 𝐵)) |
11 | 6, 10 | eqeq12d 2810 | . . 3 ⊢ (𝐴 = ∅ → (Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵) ↔ 0 = (0 · 𝐵))) |
12 | 3, 11 | syl5ibrcom 248 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
13 | eqidd 2796 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
14 | simprl 767 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈ ℕ) | |
15 | simprr 769 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
16 | simpllr 772 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | simplr 765 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐵 ∈ ℂ) | |
18 | elfznn 12786 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ) | |
19 | fvconst2g 6831 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
20 | 17, 18, 19 | syl2an 595 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
21 | 13, 14, 15, 16, 20 | fsum 14910 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴))) |
22 | ser1const 13276 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵)) | |
23 | 22 | ad2ant2lr 744 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵)) |
24 | 21, 23 | eqtrd 2831 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
25 | 24 | expr 457 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
26 | 25 | exlimdv 1911 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
27 | 26 | expimpd 454 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
28 | fz1f1o 14900 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | |
29 | 28 | adantr 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
30 | 12, 27, 29 | mpjaod 855 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 842 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ∅c0 4211 {csn 4472 × cxp 5441 –1-1-onto→wf1o 6224 ‘cfv 6225 (class class class)co 7016 Fincfn 8357 ℂcc 10381 0cc0 10383 1c1 10384 + caddc 10386 · cmul 10388 ℕcn 11486 ...cfz 12742 seqcseq 13219 ♯chash 13540 Σcsu 14876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-fz 12743 df-fzo 12884 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 |
This theorem is referenced by: fsumdifsnconst 14979 o1fsum 15001 hashiun 15010 hash2iun1dif1 15012 climcndslem1 15037 climcndslem2 15038 harmonic 15047 mertenslem1 15073 sumhash 16061 cshwshashnsame 16266 lagsubg2 18094 sylow2a 18474 lebnumlem3 23250 uniioombllem4 23870 birthdaylem2 25212 basellem8 25347 0sgm 25403 musum 25450 chtleppi 25468 vmasum 25474 logfac2 25475 chpval2 25476 chpchtsum 25477 chpub 25478 logfaclbnd 25480 dchrsum2 25526 sumdchr2 25528 lgsquadlem1 25638 chebbnd1lem1 25727 chtppilimlem1 25731 dchrmusum2 25752 dchrisum0flblem1 25766 rpvmasum2 25770 dchrisum0lem2a 25775 mudivsum 25788 mulogsumlem 25789 selberglem2 25804 pntlemj 25861 rusgrnumwwlks 27440 fusgrhashclwwlkn 27545 fusgreghash2wsp 27809 numclwwlk6 27861 reprlt 31507 hashreprin 31508 reprgt 31509 hgt750lema 31545 rrndstprj2 34641 fltnltalem 38771 stoweidlem11 41838 stoweidlem26 41853 stoweidlem38 41865 dirkertrigeq 41928 fourierdlem73 42006 etransclem32 42093 rrndistlt 42117 sge0rpcpnf 42245 hoiqssbllem2 42447 nn0mulfsum 44165 amgmlemALT 44384 |
Copyright terms: Public domain | W3C validator |