| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumconst | Structured version Visualization version GIF version | ||
| Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul02 11352 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
| 3 | 2 | eqcomd 2735 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 0 = (0 · 𝐵)) |
| 4 | sumeq1 15655 | . . . . 5 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
| 5 | sum0 15687 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
| 6 | 4, 5 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
| 7 | fveq2 6858 | . . . . . 6 ⊢ (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅)) | |
| 8 | hash0 14332 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 9 | 7, 8 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = ∅ → (♯‘𝐴) = 0) |
| 10 | 9 | oveq1d 7402 | . . . 4 ⊢ (𝐴 = ∅ → ((♯‘𝐴) · 𝐵) = (0 · 𝐵)) |
| 11 | 6, 10 | eqeq12d 2745 | . . 3 ⊢ (𝐴 = ∅ → (Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵) ↔ 0 = (0 · 𝐵))) |
| 12 | 3, 11 | syl5ibrcom 247 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 13 | eqidd 2730 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
| 14 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈ ℕ) | |
| 15 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
| 16 | simpllr 775 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 17 | simplr 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐵 ∈ ℂ) | |
| 18 | elfznn 13514 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ) | |
| 19 | fvconst2g 7176 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
| 21 | 13, 14, 15, 16, 20 | fsum 15686 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴))) |
| 22 | ser1const 14023 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵)) | |
| 23 | 22 | ad2ant2lr 748 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵)) |
| 24 | 21, 23 | eqtrd 2764 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| 25 | 24 | expr 456 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 26 | 25 | exlimdv 1933 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 27 | 26 | expimpd 453 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 28 | fz1f1o 15676 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | |
| 29 | 28 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 30 | 12, 27, 29 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4296 {csn 4589 × cxp 5636 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ℕcn 12186 ...cfz 13468 seqcseq 13966 ♯chash 14295 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: fsumdifsnconst 15757 o1fsum 15779 hashiun 15788 hash2iun1dif1 15790 climcndslem1 15815 climcndslem2 15816 harmonic 15825 mertenslem1 15850 sumhash 16867 cshwshashnsame 17074 lagsubg2 19126 sylow2a 19549 lebnumlem3 24862 uniioombllem4 25487 birthdaylem2 26862 basellem8 26998 0sgm 27054 musum 27101 chtleppi 27121 vmasum 27127 logfac2 27128 chpval2 27129 chpchtsum 27130 chpub 27131 logfaclbnd 27133 dchrsum2 27179 sumdchr2 27181 lgsquadlem1 27291 chebbnd1lem1 27380 chtppilimlem1 27384 dchrmusum2 27405 dchrisum0flblem1 27419 rpvmasum2 27423 dchrisum0lem2a 27428 mudivsum 27441 mulogsumlem 27442 selberglem2 27457 pntlemj 27514 rusgrnumwwlks 29904 fusgrhashclwwlkn 30008 fusgreghash2wsp 30267 numclwwlk6 30319 reprlt 34610 hashreprin 34611 reprgt 34612 hgt750lema 34648 rrndstprj2 37825 lcmineqlem17 42033 sticksstones10 42143 sticksstones12a 42145 fz1sumconst 42297 fltnltalem 42650 stoweidlem11 46009 stoweidlem26 46024 stoweidlem38 46036 dirkertrigeq 46099 fourierdlem73 46177 etransclem32 46264 rrndistlt 46288 sge0rpcpnf 46419 hoiqssbllem2 46621 nn0mulfsum 48613 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |