MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumconst Structured version   Visualization version   GIF version

Theorem fsumconst 15715
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fsumconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mul02 11312 . . . . 5 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
21adantl 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
32eqcomd 2735 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 0 = (0 · 𝐵))
4 sumeq1 15614 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
5 sum0 15646 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
64, 5eqtrdi 2780 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
7 fveq2 6826 . . . . . 6 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
8 hash0 14292 . . . . . 6 (♯‘∅) = 0
97, 8eqtrdi 2780 . . . . 5 (𝐴 = ∅ → (♯‘𝐴) = 0)
109oveq1d 7368 . . . 4 (𝐴 = ∅ → ((♯‘𝐴) · 𝐵) = (0 · 𝐵))
116, 10eqeq12d 2745 . . 3 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵) ↔ 0 = (0 · 𝐵)))
123, 11syl5ibrcom 247 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
13 eqidd 2730 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 770 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
15 simprr 772 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
16 simpllr 775 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐵 ∈ ℂ)
18 elfznn 13474 . . . . . . . 8 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
19 fvconst2g 7142 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2017, 18, 19syl2an 596 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2113, 14, 15, 16, 20fsum 15645 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)))
22 ser1const 13983 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵))
2322ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵))
2421, 23eqtrd 2764 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
2524expr 456 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
2625exlimdv 1933 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
2726expimpd 453 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
28 fz1f1o 15635 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
2928adantr 480 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3012, 27, 29mpjaod 860 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  c0 4286  {csn 4579   × cxp 5621  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cn 12146  ...cfz 13428  seqcseq 13926  chash 14255  Σcsu 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612
This theorem is referenced by:  fsumdifsnconst  15716  o1fsum  15738  hashiun  15747  hash2iun1dif1  15749  climcndslem1  15774  climcndslem2  15775  harmonic  15784  mertenslem1  15809  sumhash  16826  cshwshashnsame  17033  lagsubg2  19091  sylow2a  19516  lebnumlem3  24878  uniioombllem4  25503  birthdaylem2  26878  basellem8  27014  0sgm  27070  musum  27117  chtleppi  27137  vmasum  27143  logfac2  27144  chpval2  27145  chpchtsum  27146  chpub  27147  logfaclbnd  27149  dchrsum2  27195  sumdchr2  27197  lgsquadlem1  27307  chebbnd1lem1  27396  chtppilimlem1  27400  dchrmusum2  27421  dchrisum0flblem1  27435  rpvmasum2  27439  dchrisum0lem2a  27444  mudivsum  27457  mulogsumlem  27458  selberglem2  27473  pntlemj  27530  rusgrnumwwlks  29937  fusgrhashclwwlkn  30041  fusgreghash2wsp  30300  numclwwlk6  30352  reprlt  34586  hashreprin  34587  reprgt  34588  hgt750lema  34624  rrndstprj2  37810  lcmineqlem17  42018  sticksstones10  42128  sticksstones12a  42130  fz1sumconst  42282  fltnltalem  42635  stoweidlem11  45993  stoweidlem26  46008  stoweidlem38  46020  dirkertrigeq  46083  fourierdlem73  46161  etransclem32  46248  rrndistlt  46272  sge0rpcpnf  46403  hoiqssbllem2  46605  nn0mulfsum  48597  amgmlemALT  49776
  Copyright terms: Public domain W3C validator