| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumconst | Structured version Visualization version GIF version | ||
| Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul02 11359 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
| 3 | 2 | eqcomd 2736 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 0 = (0 · 𝐵)) |
| 4 | sumeq1 15662 | . . . . 5 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
| 5 | sum0 15694 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
| 6 | 4, 5 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
| 7 | fveq2 6861 | . . . . . 6 ⊢ (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅)) | |
| 8 | hash0 14339 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 9 | 7, 8 | eqtrdi 2781 | . . . . 5 ⊢ (𝐴 = ∅ → (♯‘𝐴) = 0) |
| 10 | 9 | oveq1d 7405 | . . . 4 ⊢ (𝐴 = ∅ → ((♯‘𝐴) · 𝐵) = (0 · 𝐵)) |
| 11 | 6, 10 | eqeq12d 2746 | . . 3 ⊢ (𝐴 = ∅ → (Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵) ↔ 0 = (0 · 𝐵))) |
| 12 | 3, 11 | syl5ibrcom 247 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 13 | eqidd 2731 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
| 14 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈ ℕ) | |
| 15 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
| 16 | simpllr 775 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 17 | simplr 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐵 ∈ ℂ) | |
| 18 | elfznn 13521 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ) | |
| 19 | fvconst2g 7179 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
| 21 | 13, 14, 15, 16, 20 | fsum 15693 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴))) |
| 22 | ser1const 14030 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵)) | |
| 23 | 22 | ad2ant2lr 748 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , (ℕ × {𝐵}))‘(♯‘𝐴)) = ((♯‘𝐴) · 𝐵)) |
| 24 | 21, 23 | eqtrd 2765 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| 25 | 24 | expr 456 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 26 | 25 | exlimdv 1933 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 27 | 26 | expimpd 453 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
| 28 | fz1f1o 15683 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | |
| 29 | 28 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 30 | 12, 27, 29 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4299 {csn 4592 × cxp 5639 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℕcn 12193 ...cfz 13475 seqcseq 13973 ♯chash 14302 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 |
| This theorem is referenced by: fsumdifsnconst 15764 o1fsum 15786 hashiun 15795 hash2iun1dif1 15797 climcndslem1 15822 climcndslem2 15823 harmonic 15832 mertenslem1 15857 sumhash 16874 cshwshashnsame 17081 lagsubg2 19133 sylow2a 19556 lebnumlem3 24869 uniioombllem4 25494 birthdaylem2 26869 basellem8 27005 0sgm 27061 musum 27108 chtleppi 27128 vmasum 27134 logfac2 27135 chpval2 27136 chpchtsum 27137 chpub 27138 logfaclbnd 27140 dchrsum2 27186 sumdchr2 27188 lgsquadlem1 27298 chebbnd1lem1 27387 chtppilimlem1 27391 dchrmusum2 27412 dchrisum0flblem1 27426 rpvmasum2 27430 dchrisum0lem2a 27435 mudivsum 27448 mulogsumlem 27449 selberglem2 27464 pntlemj 27521 rusgrnumwwlks 29911 fusgrhashclwwlkn 30015 fusgreghash2wsp 30274 numclwwlk6 30326 reprlt 34617 hashreprin 34618 reprgt 34619 hgt750lema 34655 rrndstprj2 37832 lcmineqlem17 42040 sticksstones10 42150 sticksstones12a 42152 fz1sumconst 42304 fltnltalem 42657 stoweidlem11 46016 stoweidlem26 46031 stoweidlem38 46043 dirkertrigeq 46106 fourierdlem73 46184 etransclem32 46271 rrndistlt 46295 sge0rpcpnf 46426 hoiqssbllem2 46628 nn0mulfsum 48617 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |