MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsval2 Structured version   Visualization version   GIF version

Theorem addsval2 27360
Description: The value of surreal addition with different choices for each bound variable. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
addsval2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑙,𝑦   𝐴,𝑚,𝑧   𝐴,𝑟,𝑤   𝐴,𝑠,𝑡   𝐵,𝑙,𝑦   𝐵,𝑚,𝑧   𝐵,𝑟,𝑤   𝐵,𝑠,𝑡

Proof of Theorem addsval2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsval 27359 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})))
2 eqeq1 2735 . . . . . . 7 (𝑎 = 𝑦 → (𝑎 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
32rexbidv 3177 . . . . . 6 (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵)))
4 oveq1 7399 . . . . . . . 8 (𝑏 = 𝑙 → (𝑏 +s 𝐵) = (𝑙 +s 𝐵))
54eqeq2d 2742 . . . . . . 7 (𝑏 = 𝑙 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑙 +s 𝐵)))
65cbvrexvw 3234 . . . . . 6 (∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵))
73, 6bitrdi 286 . . . . 5 (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)))
87cbvabv 2804 . . . 4 {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)}
9 eqeq1 2735 . . . . . . 7 (𝑐 = 𝑧 → (𝑐 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑏)))
109rexbidv 3177 . . . . . 6 (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏)))
11 oveq2 7400 . . . . . . . 8 (𝑏 = 𝑚 → (𝐴 +s 𝑏) = (𝐴 +s 𝑚))
1211eqeq2d 2742 . . . . . . 7 (𝑏 = 𝑚 → (𝑧 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑚)))
1312cbvrexvw 3234 . . . . . 6 (∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚))
1410, 13bitrdi 286 . . . . 5 (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)))
1514cbvabv 2804 . . . 4 {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)} = {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}
168, 15uneq12i 4156 . . 3 ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)})
17 eqeq1 2735 . . . . . . 7 (𝑎 = 𝑤 → (𝑎 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑑 +s 𝐵)))
1817rexbidv 3177 . . . . . 6 (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵)))
19 oveq1 7399 . . . . . . . 8 (𝑑 = 𝑟 → (𝑑 +s 𝐵) = (𝑟 +s 𝐵))
2019eqeq2d 2742 . . . . . . 7 (𝑑 = 𝑟 → (𝑤 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑟 +s 𝐵)))
2120cbvrexvw 3234 . . . . . 6 (∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵))
2218, 21bitrdi 286 . . . . 5 (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)))
2322cbvabv 2804 . . . 4 {𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} = {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)}
24 eqeq1 2735 . . . . . . 7 (𝑐 = 𝑡 → (𝑐 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑑)))
2524rexbidv 3177 . . . . . 6 (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑)))
26 oveq2 7400 . . . . . . . 8 (𝑑 = 𝑠 → (𝐴 +s 𝑑) = (𝐴 +s 𝑠))
2726eqeq2d 2742 . . . . . . 7 (𝑑 = 𝑠 → (𝑡 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑠)))
2827cbvrexvw 3234 . . . . . 6 (∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠))
2925, 28bitrdi 286 . . . . 5 (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)))
3029cbvabv 2804 . . . 4 {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)} = {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}
3123, 30uneq12i 4156 . . 3 ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)}) = ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})
3216, 31oveq12i 7404 . 2 (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}))
331, 32eqtrdi 2787 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2708  wrex 3069  cun 3941  cfv 6531  (class class class)co 7392   No csur 27067   |s cscut 27207   L cleft 27260   R cright 27261   +s cadds 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5277  ax-sep 5291  ax-nul 5298  ax-pow 5355  ax-pr 5419  ax-un 7707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3474  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4943  df-iun 4991  df-br 5141  df-opab 5203  df-mpt 5224  df-tr 5258  df-id 5566  df-eprel 5572  df-po 5580  df-so 5581  df-fr 5623  df-se 5624  df-we 5625  df-xp 5674  df-rel 5675  df-cnv 5676  df-co 5677  df-dm 5678  df-rn 5679  df-res 5680  df-ima 5681  df-pred 6288  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6483  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7348  df-ov 7395  df-oprab 7396  df-mpo 7397  df-1st 7956  df-2nd 7957  df-frecs 8247  df-wrecs 8278  df-recs 8352  df-1o 8447  df-2o 8448  df-no 27070  df-slt 27071  df-bday 27072  df-sslt 27206  df-scut 27208  df-made 27262  df-old 27263  df-left 27265  df-right 27266  df-norec2 27346  df-adds 27357
This theorem is referenced by:  addsproplem3  27368  sleadd1  27385  addsuniflem  27397  addsasslem1  27399  addsasslem2  27400  addsdilem1  27515
  Copyright terms: Public domain W3C validator