MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsval2 Structured version   Visualization version   GIF version

Theorem addsval2 27447
Description: The value of surreal addition with different choices for each bound variable. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
addsval2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑙,𝑦   𝐴,𝑚,𝑧   𝐴,𝑟,𝑤   𝐴,𝑠,𝑡   𝐵,𝑙,𝑦   𝐵,𝑚,𝑧   𝐵,𝑟,𝑤   𝐵,𝑠,𝑡

Proof of Theorem addsval2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsval 27446 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})))
2 eqeq1 2737 . . . . . . 7 (𝑎 = 𝑦 → (𝑎 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
32rexbidv 3179 . . . . . 6 (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵)))
4 oveq1 7416 . . . . . . . 8 (𝑏 = 𝑙 → (𝑏 +s 𝐵) = (𝑙 +s 𝐵))
54eqeq2d 2744 . . . . . . 7 (𝑏 = 𝑙 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑙 +s 𝐵)))
65cbvrexvw 3236 . . . . . 6 (∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵))
73, 6bitrdi 287 . . . . 5 (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)))
87cbvabv 2806 . . . 4 {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)}
9 eqeq1 2737 . . . . . . 7 (𝑐 = 𝑧 → (𝑐 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑏)))
109rexbidv 3179 . . . . . 6 (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏)))
11 oveq2 7417 . . . . . . . 8 (𝑏 = 𝑚 → (𝐴 +s 𝑏) = (𝐴 +s 𝑚))
1211eqeq2d 2744 . . . . . . 7 (𝑏 = 𝑚 → (𝑧 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑚)))
1312cbvrexvw 3236 . . . . . 6 (∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚))
1410, 13bitrdi 287 . . . . 5 (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)))
1514cbvabv 2806 . . . 4 {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)} = {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}
168, 15uneq12i 4162 . . 3 ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)})
17 eqeq1 2737 . . . . . . 7 (𝑎 = 𝑤 → (𝑎 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑑 +s 𝐵)))
1817rexbidv 3179 . . . . . 6 (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵)))
19 oveq1 7416 . . . . . . . 8 (𝑑 = 𝑟 → (𝑑 +s 𝐵) = (𝑟 +s 𝐵))
2019eqeq2d 2744 . . . . . . 7 (𝑑 = 𝑟 → (𝑤 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑟 +s 𝐵)))
2120cbvrexvw 3236 . . . . . 6 (∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵))
2218, 21bitrdi 287 . . . . 5 (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)))
2322cbvabv 2806 . . . 4 {𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} = {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)}
24 eqeq1 2737 . . . . . . 7 (𝑐 = 𝑡 → (𝑐 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑑)))
2524rexbidv 3179 . . . . . 6 (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑)))
26 oveq2 7417 . . . . . . . 8 (𝑑 = 𝑠 → (𝐴 +s 𝑑) = (𝐴 +s 𝑠))
2726eqeq2d 2744 . . . . . . 7 (𝑑 = 𝑠 → (𝑡 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑠)))
2827cbvrexvw 3236 . . . . . 6 (∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠))
2925, 28bitrdi 287 . . . . 5 (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)))
3029cbvabv 2806 . . . 4 {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)} = {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}
3123, 30uneq12i 4162 . . 3 ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)}) = ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})
3216, 31oveq12i 7421 . 2 (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}))
331, 32eqtrdi 2789 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  cun 3947  cfv 6544  (class class class)co 7409   No csur 27143   |s cscut 27284   L cleft 27340   R cright 27341   +s cadds 27443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sslt 27283  df-scut 27285  df-made 27342  df-old 27343  df-left 27345  df-right 27346  df-norec2 27433  df-adds 27444
This theorem is referenced by:  addsproplem3  27455  sleadd1  27472  addsuniflem  27484  addsasslem1  27486  addsasslem2  27487  addsdilem1  27606
  Copyright terms: Public domain W3C validator