Step | Hyp | Ref
| Expression |
1 | | addsval 27277 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)}))) |
2 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (𝑎 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵))) |
3 | 2 | rexbidv 3176 |
. . . . . 6
⊢ (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵))) |
4 | | oveq1 7365 |
. . . . . . . 8
⊢ (𝑏 = 𝑙 → (𝑏 +s 𝐵) = (𝑙 +s 𝐵)) |
5 | 4 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑏 = 𝑙 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑙 +s 𝐵))) |
6 | 5 | cbvrexvw 3227 |
. . . . . 6
⊢
(∃𝑏 ∈ ( L
‘𝐴)𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)) |
7 | 3, 6 | bitrdi 287 |
. . . . 5
⊢ (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵))) |
8 | 7 | cbvabv 2810 |
. . . 4
⊢ {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} |
9 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑐 = 𝑧 → (𝑐 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑏))) |
10 | 9 | rexbidv 3176 |
. . . . . 6
⊢ (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏))) |
11 | | oveq2 7366 |
. . . . . . . 8
⊢ (𝑏 = 𝑚 → (𝐴 +s 𝑏) = (𝐴 +s 𝑚)) |
12 | 11 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑏 = 𝑚 → (𝑧 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑚))) |
13 | 12 | cbvrexvw 3227 |
. . . . . 6
⊢
(∃𝑏 ∈ ( L
‘𝐵)𝑧 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)) |
14 | 10, 13 | bitrdi 287 |
. . . . 5
⊢ (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚))) |
15 | 14 | cbvabv 2810 |
. . . 4
⊢ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)} = {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)} |
16 | 8, 15 | uneq12i 4122 |
. . 3
⊢ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |
17 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑎 = 𝑤 → (𝑎 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑑 +s 𝐵))) |
18 | 17 | rexbidv 3176 |
. . . . . 6
⊢ (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵))) |
19 | | oveq1 7365 |
. . . . . . . 8
⊢ (𝑑 = 𝑟 → (𝑑 +s 𝐵) = (𝑟 +s 𝐵)) |
20 | 19 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑑 = 𝑟 → (𝑤 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑟 +s 𝐵))) |
21 | 20 | cbvrexvw 3227 |
. . . . . 6
⊢
(∃𝑑 ∈ ( R
‘𝐴)𝑤 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)) |
22 | 18, 21 | bitrdi 287 |
. . . . 5
⊢ (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵))) |
23 | 22 | cbvabv 2810 |
. . . 4
⊢ {𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} = {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} |
24 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑐 = 𝑡 → (𝑐 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑑))) |
25 | 24 | rexbidv 3176 |
. . . . . 6
⊢ (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑))) |
26 | | oveq2 7366 |
. . . . . . . 8
⊢ (𝑑 = 𝑠 → (𝐴 +s 𝑑) = (𝐴 +s 𝑠)) |
27 | 26 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑑 = 𝑠 → (𝑡 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑠))) |
28 | 27 | cbvrexvw 3227 |
. . . . . 6
⊢
(∃𝑑 ∈ ( R
‘𝐵)𝑡 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)) |
29 | 25, 28 | bitrdi 287 |
. . . . 5
⊢ (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠))) |
30 | 29 | cbvabv 2810 |
. . . 4
⊢ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)} = {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)} |
31 | 23, 30 | uneq12i 4122 |
. . 3
⊢ ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)}) = ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}) |
32 | 16, 31 | oveq12i 7370 |
. 2
⊢ (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})) |
33 | 1, 32 | eqtrdi 2793 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}))) |