MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsval2 Structured version   Visualization version   GIF version

Theorem addsval2 27927
Description: The value of surreal addition with different choices for each bound variable. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
addsval2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑙,𝑦   𝐴,𝑚,𝑧   𝐴,𝑟,𝑤   𝐴,𝑠,𝑡   𝐵,𝑙,𝑦   𝐵,𝑚,𝑧   𝐵,𝑟,𝑤   𝐵,𝑠,𝑡

Proof of Theorem addsval2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsval 27926 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})))
2 eqeq1 2740 . . . . . . 7 (𝑎 = 𝑦 → (𝑎 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
32rexbidv 3165 . . . . . 6 (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵)))
4 oveq1 7417 . . . . . . . 8 (𝑏 = 𝑙 → (𝑏 +s 𝐵) = (𝑙 +s 𝐵))
54eqeq2d 2747 . . . . . . 7 (𝑏 = 𝑙 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑦 = (𝑙 +s 𝐵)))
65cbvrexvw 3225 . . . . . 6 (∃𝑏 ∈ ( L ‘𝐴)𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵))
73, 6bitrdi 287 . . . . 5 (𝑎 = 𝑦 → (∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)))
87cbvabv 2806 . . . 4 {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)}
9 eqeq1 2740 . . . . . . 7 (𝑐 = 𝑧 → (𝑐 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑏)))
109rexbidv 3165 . . . . . 6 (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏)))
11 oveq2 7418 . . . . . . . 8 (𝑏 = 𝑚 → (𝐴 +s 𝑏) = (𝐴 +s 𝑚))
1211eqeq2d 2747 . . . . . . 7 (𝑏 = 𝑚 → (𝑧 = (𝐴 +s 𝑏) ↔ 𝑧 = (𝐴 +s 𝑚)))
1312cbvrexvw 3225 . . . . . 6 (∃𝑏 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚))
1410, 13bitrdi 287 . . . . 5 (𝑐 = 𝑧 → (∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏) ↔ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)))
1514cbvabv 2806 . . . 4 {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)} = {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}
168, 15uneq12i 4146 . . 3 ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)})
17 eqeq1 2740 . . . . . . 7 (𝑎 = 𝑤 → (𝑎 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑑 +s 𝐵)))
1817rexbidv 3165 . . . . . 6 (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵)))
19 oveq1 7417 . . . . . . . 8 (𝑑 = 𝑟 → (𝑑 +s 𝐵) = (𝑟 +s 𝐵))
2019eqeq2d 2747 . . . . . . 7 (𝑑 = 𝑟 → (𝑤 = (𝑑 +s 𝐵) ↔ 𝑤 = (𝑟 +s 𝐵)))
2120cbvrexvw 3225 . . . . . 6 (∃𝑑 ∈ ( R ‘𝐴)𝑤 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵))
2218, 21bitrdi 287 . . . . 5 (𝑎 = 𝑤 → (∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)))
2322cbvabv 2806 . . . 4 {𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} = {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)}
24 eqeq1 2740 . . . . . . 7 (𝑐 = 𝑡 → (𝑐 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑑)))
2524rexbidv 3165 . . . . . 6 (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑)))
26 oveq2 7418 . . . . . . . 8 (𝑑 = 𝑠 → (𝐴 +s 𝑑) = (𝐴 +s 𝑠))
2726eqeq2d 2747 . . . . . . 7 (𝑑 = 𝑠 → (𝑡 = (𝐴 +s 𝑑) ↔ 𝑡 = (𝐴 +s 𝑠)))
2827cbvrexvw 3225 . . . . . 6 (∃𝑑 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠))
2925, 28bitrdi 287 . . . . 5 (𝑐 = 𝑡 → (∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)))
3029cbvabv 2806 . . . 4 {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)} = {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}
3123, 30uneq12i 4146 . . 3 ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)}) = ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})
3216, 31oveq12i 7422 . 2 (({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝐴)𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑏 ∈ ( L ‘𝐵)𝑐 = (𝐴 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑑 ∈ ( R ‘𝐴)𝑎 = (𝑑 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( R ‘𝐵)𝑐 = (𝐴 +s 𝑑)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}))
331, 32eqtrdi 2787 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  cun 3929  cfv 6536  (class class class)co 7410   No csur 27608   |s cscut 27751   L cleft 27810   R cright 27811   +s cadds 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924
This theorem is referenced by:  addsproplem3  27935  sleadd1  27953  addsuniflem  27965  addsasslem1  27967  addsasslem2  27968  addsbday  27981  addsdilem1  28111
  Copyright terms: Public domain W3C validator