![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subne0d | Structured version Visualization version GIF version |
Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
subne0d | ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | negidd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | pncand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subeq0 10651 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
5 | 2, 3, 4 | syl2anc 579 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 3013 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≠ 0 ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 249 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 (class class class)co 6924 ℂcc 10272 0cc0 10274 − cmin 10608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-ltxr 10418 df-sub 10610 |
This theorem is referenced by: modsumfzodifsn 13066 abssubne0 14467 rlimuni 14693 climuni 14695 pwm1geoser 15008 evth 23170 dvlem 24101 dvconst 24121 dvid 24122 dvcnp2 24124 dvaddbr 24142 dvmulbr 24143 dvcobr 24150 dvcjbr 24153 dvrec 24159 dvcnvlem 24180 dvferm2lem 24190 taylthlem2 24569 ulmdvlem1 24595 ang180lem4 24994 ang180lem5 24995 ang180 24996 isosctrlem3 25002 isosctr 25003 ssscongptld 25004 affineequivne 25009 angpieqvdlem 25010 angpieqvdlem2 25011 angpined 25012 angpieqvd 25013 chordthmlem 25014 chordthmlem2 25015 heron 25020 asinlem 25050 lgamgulmlem2 25212 lgamgulmlem3 25213 ttgcontlem1 26238 brbtwn2 26258 axcontlem8 26324 2sqmod 30214 signsvtn0 31251 signsvtn0OLD 31252 unbdqndv2lem2 33087 bj-bary1lem 33761 bj-bary1lem1 33762 bj-bary1 33763 pellexlem6 38368 jm2.26lem3 38537 areaquad 38770 bcc0 39505 bccm1k 39507 abssubrp 40407 lptre2pt 40790 limclner 40801 climxrre 40900 cnrefiisplem 40979 fperdvper 41071 stoweidlem23 41177 wallispilem4 41222 wallispi 41224 wallispi2lem1 41225 wallispi2lem2 41226 wallispi2 41227 stirlinglem5 41232 fourierdlem4 41265 fourierdlem42 41303 fourierdlem74 41334 fourierdlem75 41335 fouriersw 41385 sigardiv 41987 sigarcol 41990 sharhght 41991 affinecomb1 43448 affinecomb2 43449 1subrec1sub 43451 eenglngeehlnmlem1 43483 eenglngeehlnmlem2 43484 rrx2vlinest 43487 rrx2linest 43488 2itscp 43527 itscnhlinecirc02plem1 43528 itscnhlinecirc02p 43531 |
Copyright terms: Public domain | W3C validator |