Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
= wceq 1541 ∈
wcel 2106 ≠ wne 2940
(class class class)co 7411 ℂcc 11110
0cc0 11112 − cmin 11448 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 |
This theorem is referenced by: modsumfzodifsn
13913 abssubne0
15267 rlimuni
15498 climuni
15500 evth
24699 dvlem
25637 dvconst
25658 dvid
25659 dvcnp2
25661 dvaddbr
25679 dvmulbr
25680 dvcobr
25687 dvcjbr
25690 dvrec
25696 dvcnvlem
25717 dvferm2lem
25727 taylthlem2
26110 ulmdvlem1
26136 ang180lem4
26541 ang180lem5
26542 ang180
26543 isosctrlem3
26549 isosctr
26550 ssscongptld
26551 affineequivne
26556 angpieqvdlem
26557 angpieqvdlem2
26558 angpined
26559 angpieqvd
26560 chordthmlem
26561 chordthmlem2
26562 heron
26567 asinlem
26597 lgamgulmlem2
26758 lgamgulmlem3
26759 2sqmod
27163 ttgcontlem1
28397 brbtwn2
28418 axcontlem8
28484 subne0nn
32282 signsvtn0
33867 gg-dvcnp2
35460 gg-dvmulbr
35461 gg-dvcobr
35462 unbdqndv2lem2
35689 bj-bary1lem
36494 bj-bary1lem1
36495 bj-bary1
36496 lcmineqlem11
41210 pellexlem6
41874 jm2.26lem3
42042 areaquad
42267 bcc0
43401 bccm1k
43403 abssubrp
44284 lptre2pt
44655 limclner
44666 climxrre
44765 cnrefiisplem
44844 fperdvper
44934 stoweidlem23
45038 wallispilem4
45083 wallispi
45085 wallispi2lem1
45086 wallispi2lem2
45087 wallispi2
45088 stirlinglem5
45093 fourierdlem4
45126 fourierdlem42
45164 fourierdlem74
45195 fourierdlem75
45196 fouriersw
45246 sigardiv
45876 sigarcol
45879 sharhght
45880 affinecomb1
47476 affinecomb2
47477 1subrec1sub
47479 eenglngeehlnmlem1
47511 eenglngeehlnmlem2
47512 rrx2vlinest
47515 rrx2linest
47516 2itscp
47555 itscnhlinecirc02plem1
47556 itscnhlinecirc02p
47559 |