MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subne0d Structured version   Visualization version   GIF version

Theorem subne0d 11542
Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subne0d.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
subne0d (𝜑 → (𝐴𝐵) ≠ 0)

Proof of Theorem subne0d
StepHypRef Expression
1 subne0d.3 . 2 (𝜑𝐴𝐵)
2 negidd.1 . . . 4 (𝜑𝐴 ∈ ℂ)
3 pncand.2 . . . 4 (𝜑𝐵 ∈ ℂ)
4 subeq0 11448 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
52, 3, 4syl2anc 584 . . 3 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
65necon3bid 2969 . 2 (𝜑 → ((𝐴𝐵) ≠ 0 ↔ 𝐴𝐵))
71, 6mpbird 257 1 (𝜑 → (𝐴𝐵) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  modsumfzodifsn  13909  abssubne0  15283  rlimuni  15516  climuni  15518  evth  24858  dvlem  25797  dvconst  25818  dvid  25819  dvcnp2  25821  dvcnp2OLD  25822  dvaddbr  25840  dvmulbr  25841  dvmulbrOLD  25842  dvcobr  25849  dvcobrOLD  25850  dvcjbr  25853  dvrec  25859  dvcnvlem  25880  dvferm2lem  25890  taylthlem2  26282  taylthlem2OLD  26283  ulmdvlem1  26309  ang180lem4  26722  ang180lem5  26723  ang180  26724  isosctrlem3  26730  isosctr  26731  ssscongptld  26732  affineequivne  26737  angpieqvdlem  26738  angpieqvdlem2  26739  angpined  26740  angpieqvd  26741  chordthmlem  26742  chordthmlem2  26743  heron  26748  asinlem  26778  lgamgulmlem2  26940  lgamgulmlem3  26941  2sqmod  27347  ttgcontlem1  28812  brbtwn2  28832  axcontlem8  28898  subne0nn  32746  constrrtll  33721  constrrtlc1  33722  constrrtcclem  33724  constrrtcc  33725  constrfin  33736  constrelextdg2  33737  cos9thpiminplylem3  33774  signsvtn0  34561  unbdqndv2lem2  36498  bj-bary1lem  37298  bj-bary1lem1  37299  bj-bary1  37300  lcmineqlem11  42027  pellexlem6  42822  jm2.26lem3  42990  areaquad  43205  bcc0  44329  bccm1k  44331  abssubrp  45274  lptre2pt  45638  limclner  45649  climxrre  45748  cnrefiisplem  45827  fperdvper  45917  stoweidlem23  46021  wallispilem4  46066  wallispi  46068  wallispi2lem1  46069  wallispi2lem2  46070  wallispi2  46071  stirlinglem5  46076  fourierdlem4  46109  fourierdlem42  46147  fourierdlem74  46178  fourierdlem75  46179  fouriersw  46229  sigardiv  46859  sigarcol  46862  sharhght  46863  affinecomb1  48691  affinecomb2  48692  1subrec1sub  48694  eenglngeehlnmlem1  48726  eenglngeehlnmlem2  48727  rrx2vlinest  48730  rrx2linest  48731  2itscp  48770  itscnhlinecirc02plem1  48771  itscnhlinecirc02p  48774
  Copyright terms: Public domain W3C validator