Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subne0d | Structured version Visualization version GIF version |
Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
subne0d | ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | negidd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | pncand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subeq0 11293 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
5 | 2, 3, 4 | syl2anc 585 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2986 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≠ 0 ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10915 0cc0 10917 − cmin 11251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-ltxr 11060 df-sub 11253 |
This theorem is referenced by: modsumfzodifsn 13710 abssubne0 15073 rlimuni 15304 climuni 15306 evth 24167 dvlem 25105 dvconst 25126 dvid 25127 dvcnp2 25129 dvaddbr 25147 dvmulbr 25148 dvcobr 25155 dvcjbr 25158 dvrec 25164 dvcnvlem 25185 dvferm2lem 25195 taylthlem2 25578 ulmdvlem1 25604 ang180lem4 26007 ang180lem5 26008 ang180 26009 isosctrlem3 26015 isosctr 26016 ssscongptld 26017 affineequivne 26022 angpieqvdlem 26023 angpieqvdlem2 26024 angpined 26025 angpieqvd 26026 chordthmlem 26027 chordthmlem2 26028 heron 26033 asinlem 26063 lgamgulmlem2 26224 lgamgulmlem3 26225 2sqmod 26629 ttgcontlem1 27297 brbtwn2 27318 axcontlem8 27384 subne0nn 31180 signsvtn0 32594 unbdqndv2lem2 34735 bj-bary1lem 35525 bj-bary1lem1 35526 bj-bary1 35527 lcmineqlem11 40089 pellexlem6 40693 jm2.26lem3 40861 areaquad 41085 bcc0 41996 bccm1k 41998 abssubrp 42862 lptre2pt 43230 limclner 43241 climxrre 43340 cnrefiisplem 43419 fperdvper 43509 stoweidlem23 43613 wallispilem4 43658 wallispi 43660 wallispi2lem1 43661 wallispi2lem2 43662 wallispi2 43663 stirlinglem5 43668 fourierdlem4 43701 fourierdlem42 43739 fourierdlem74 43770 fourierdlem75 43771 fouriersw 43821 sigardiv 44435 sigarcol 44438 sharhght 44439 affinecomb1 46106 affinecomb2 46107 1subrec1sub 46109 eenglngeehlnmlem1 46141 eenglngeehlnmlem2 46142 rrx2vlinest 46145 rrx2linest 46146 2itscp 46185 itscnhlinecirc02plem1 46186 itscnhlinecirc02p 46189 |
Copyright terms: Public domain | W3C validator |