Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subne0d | Structured version Visualization version GIF version |
Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
subne0d | ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | negidd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | pncand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subeq0 11193 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2986 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≠ 0 ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 ≠ wne 2941 (class class class)co 7260 ℂcc 10816 0cc0 10818 − cmin 11151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-ltxr 10961 df-sub 11153 |
This theorem is referenced by: modsumfzodifsn 13608 abssubne0 14972 rlimuni 15203 climuni 15205 evth 24066 dvlem 25003 dvconst 25024 dvid 25025 dvcnp2 25027 dvaddbr 25045 dvmulbr 25046 dvcobr 25053 dvcjbr 25056 dvrec 25062 dvcnvlem 25083 dvferm2lem 25093 taylthlem2 25476 ulmdvlem1 25502 ang180lem4 25905 ang180lem5 25906 ang180 25907 isosctrlem3 25913 isosctr 25914 ssscongptld 25915 affineequivne 25920 angpieqvdlem 25921 angpieqvdlem2 25922 angpined 25923 angpieqvd 25924 chordthmlem 25925 chordthmlem2 25926 heron 25931 asinlem 25961 lgamgulmlem2 26122 lgamgulmlem3 26123 2sqmod 26527 ttgcontlem1 27195 brbtwn2 27216 axcontlem8 27282 subne0nn 31077 signsvtn0 32491 unbdqndv2lem2 34659 bj-bary1lem 35450 bj-bary1lem1 35451 bj-bary1 35452 lcmineqlem11 40017 pellexlem6 40614 jm2.26lem3 40781 areaquad 41005 bcc0 41889 bccm1k 41891 abssubrp 42745 lptre2pt 43113 limclner 43124 climxrre 43223 cnrefiisplem 43302 fperdvper 43392 stoweidlem23 43496 wallispilem4 43541 wallispi 43543 wallispi2lem1 43544 wallispi2lem2 43545 wallispi2 43546 stirlinglem5 43551 fourierdlem4 43584 fourierdlem42 43622 fourierdlem74 43653 fourierdlem75 43654 fouriersw 43704 sigardiv 44306 sigarcol 44309 sharhght 44310 affinecomb1 45978 affinecomb2 45979 1subrec1sub 45981 eenglngeehlnmlem1 46013 eenglngeehlnmlem2 46014 rrx2vlinest 46017 rrx2linest 46018 2itscp 46057 itscnhlinecirc02plem1 46058 itscnhlinecirc02p 46061 |
Copyright terms: Public domain | W3C validator |