Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subne0d | Structured version Visualization version GIF version |
Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
subne0d | ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | negidd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | pncand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subeq0 11230 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2989 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≠ 0 ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 (class class class)co 7268 ℂcc 10853 0cc0 10855 − cmin 11188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 |
This theorem is referenced by: modsumfzodifsn 13645 abssubne0 15009 rlimuni 15240 climuni 15242 evth 24103 dvlem 25041 dvconst 25062 dvid 25063 dvcnp2 25065 dvaddbr 25083 dvmulbr 25084 dvcobr 25091 dvcjbr 25094 dvrec 25100 dvcnvlem 25121 dvferm2lem 25131 taylthlem2 25514 ulmdvlem1 25540 ang180lem4 25943 ang180lem5 25944 ang180 25945 isosctrlem3 25951 isosctr 25952 ssscongptld 25953 affineequivne 25958 angpieqvdlem 25959 angpieqvdlem2 25960 angpined 25961 angpieqvd 25962 chordthmlem 25963 chordthmlem2 25964 heron 25969 asinlem 25999 lgamgulmlem2 26160 lgamgulmlem3 26161 2sqmod 26565 ttgcontlem1 27233 brbtwn2 27254 axcontlem8 27320 subne0nn 31114 signsvtn0 32528 unbdqndv2lem2 34669 bj-bary1lem 35460 bj-bary1lem1 35461 bj-bary1 35462 lcmineqlem11 40027 pellexlem6 40636 jm2.26lem3 40803 areaquad 41027 bcc0 41911 bccm1k 41913 abssubrp 42767 lptre2pt 43135 limclner 43146 climxrre 43245 cnrefiisplem 43324 fperdvper 43414 stoweidlem23 43518 wallispilem4 43563 wallispi 43565 wallispi2lem1 43566 wallispi2lem2 43567 wallispi2 43568 stirlinglem5 43573 fourierdlem4 43606 fourierdlem42 43644 fourierdlem74 43675 fourierdlem75 43676 fouriersw 43726 sigardiv 44328 sigarcol 44331 sharhght 44332 affinecomb1 46000 affinecomb2 46001 1subrec1sub 46003 eenglngeehlnmlem1 46035 eenglngeehlnmlem2 46036 rrx2vlinest 46039 rrx2linest 46040 2itscp 46079 itscnhlinecirc02plem1 46080 itscnhlinecirc02p 46083 |
Copyright terms: Public domain | W3C validator |