Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aleph11 | Structured version Visualization version GIF version |
Description: The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
aleph11 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephord3 9697 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵))) | |
2 | alephord3 9697 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (ℵ‘𝐵) ⊆ (ℵ‘𝐴))) | |
3 | 2 | ancoms 462 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (ℵ‘𝐵) ⊆ (ℵ‘𝐴))) |
4 | 1, 3 | anbi12d 634 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ⊆ (ℵ‘𝐴)))) |
5 | eqss 3921 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
6 | eqss 3921 | . . 3 ⊢ ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ⊆ (ℵ‘𝐴))) | |
7 | 4, 5, 6 | 3bitr4g 317 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ (ℵ‘𝐴) = (ℵ‘𝐵))) |
8 | 7 | bicomd 226 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3871 Oncon0 6218 ‘cfv 6385 ℵcale 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-om 7650 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-oi 9131 df-har 9178 df-card 9560 df-aleph 9561 |
This theorem is referenced by: alephf1 9704 alephiso 9717 |
Copyright terms: Public domain | W3C validator |