MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephf1 Structured version   Visualization version   GIF version

Theorem alephf1 9998
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10016. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephf1 ℵ:On–1-1→On

Proof of Theorem alephf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 9978 . . 3 ℵ Fn On
2 alephon 9982 . . . 4 (ℵ‘𝑥) ∈ On
32rgenw 3048 . . 3 𝑥 ∈ On (ℵ‘𝑥) ∈ On
4 ffnfv 7057 . . 3 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On))
51, 3, 4mpbir2an 711 . 2 ℵ:On⟶On
6 aleph11 9997 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) ↔ 𝑥 = 𝑦))
76biimpd 229 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦))
87rgen2 3169 . 2 𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)
9 dff13 7195 . 2 (ℵ:On–1-1→On ↔ (ℵ:On⟶On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)))
105, 8, 9mpbir2an 711 1 ℵ:On–1-1→On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Oncon0 6311   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  cale 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-har 9468  df-card 9854  df-aleph 9855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator