![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephf1 | Structured version Visualization version GIF version |
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 9259. (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephf1 | ⊢ ℵ:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 9221 | . . 3 ⊢ ℵ Fn On | |
2 | alephon 9225 | . . . 4 ⊢ (ℵ‘𝑥) ∈ On | |
3 | 2 | rgenw 3106 | . . 3 ⊢ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On |
4 | ffnfv 6652 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On)) | |
5 | 1, 3, 4 | mpbir2an 701 | . 2 ⊢ ℵ:On⟶On |
6 | aleph11 9240 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) ↔ 𝑥 = 𝑦)) | |
7 | 6 | biimpd 221 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)) |
8 | 7 | rgen2a 3159 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦) |
9 | dff13 6784 | . 2 ⊢ (ℵ:On–1-1→On ↔ (ℵ:On⟶On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦))) | |
10 | 5, 8, 9 | mpbir2an 701 | 1 ⊢ ℵ:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 Oncon0 5976 Fn wfn 6130 ⟶wf 6131 –1-1→wf1 6132 ‘cfv 6135 ℵcale 9095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-oi 8704 df-har 8752 df-card 9098 df-aleph 9099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |