MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephf1 Structured version   Visualization version   GIF version

Theorem alephf1 10082
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10100. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephf1 β„΅:On–1-1β†’On

Proof of Theorem alephf1
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 10062 . . 3 β„΅ Fn On
2 alephon 10066 . . . 4 (β„΅β€˜π‘₯) ∈ On
32rgenw 3063 . . 3 βˆ€π‘₯ ∈ On (β„΅β€˜π‘₯) ∈ On
4 ffnfv 7119 . . 3 (β„΅:On⟢On ↔ (β„΅ Fn On ∧ βˆ€π‘₯ ∈ On (β„΅β€˜π‘₯) ∈ On))
51, 3, 4mpbir2an 707 . 2 β„΅:On⟢On
6 aleph11 10081 . . . 4 ((π‘₯ ∈ On ∧ 𝑦 ∈ On) β†’ ((β„΅β€˜π‘₯) = (β„΅β€˜π‘¦) ↔ π‘₯ = 𝑦))
76biimpd 228 . . 3 ((π‘₯ ∈ On ∧ 𝑦 ∈ On) β†’ ((β„΅β€˜π‘₯) = (β„΅β€˜π‘¦) β†’ π‘₯ = 𝑦))
87rgen2 3195 . 2 βˆ€π‘₯ ∈ On βˆ€π‘¦ ∈ On ((β„΅β€˜π‘₯) = (β„΅β€˜π‘¦) β†’ π‘₯ = 𝑦)
9 dff13 7256 . 2 (β„΅:On–1-1β†’On ↔ (β„΅:On⟢On ∧ βˆ€π‘₯ ∈ On βˆ€π‘¦ ∈ On ((β„΅β€˜π‘₯) = (β„΅β€˜π‘¦) β†’ π‘₯ = 𝑦)))
105, 8, 9mpbir2an 707 1 β„΅:On–1-1β†’On
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  Oncon0 6363   Fn wfn 6537  βŸΆwf 6538  β€“1-1β†’wf1 6539  β€˜cfv 6542  β„΅cale 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator