![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephf1 | Structured version Visualization version GIF version |
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10100. (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephf1 | β’ β΅:Onβ1-1βOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10062 | . . 3 β’ β΅ Fn On | |
2 | alephon 10066 | . . . 4 β’ (β΅βπ₯) β On | |
3 | 2 | rgenw 3063 | . . 3 β’ βπ₯ β On (β΅βπ₯) β On |
4 | ffnfv 7119 | . . 3 β’ (β΅:OnβΆOn β (β΅ Fn On β§ βπ₯ β On (β΅βπ₯) β On)) | |
5 | 1, 3, 4 | mpbir2an 707 | . 2 β’ β΅:OnβΆOn |
6 | aleph11 10081 | . . . 4 β’ ((π₯ β On β§ π¦ β On) β ((β΅βπ₯) = (β΅βπ¦) β π₯ = π¦)) | |
7 | 6 | biimpd 228 | . . 3 β’ ((π₯ β On β§ π¦ β On) β ((β΅βπ₯) = (β΅βπ¦) β π₯ = π¦)) |
8 | 7 | rgen2 3195 | . 2 β’ βπ₯ β On βπ¦ β On ((β΅βπ₯) = (β΅βπ¦) β π₯ = π¦) |
9 | dff13 7256 | . 2 β’ (β΅:Onβ1-1βOn β (β΅:OnβΆOn β§ βπ₯ β On βπ¦ β On ((β΅βπ₯) = (β΅βπ¦) β π₯ = π¦))) | |
10 | 5, 8, 9 | mpbir2an 707 | 1 β’ β΅:Onβ1-1βOn |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 Oncon0 6363 Fn wfn 6537 βΆwf 6538 β1-1βwf1 6539 βcfv 6542 β΅cale 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-har 9554 df-card 9936 df-aleph 9937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |