MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephf1 Structured version   Visualization version   GIF version

Theorem alephf1 10104
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10122. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephf1 ℵ:On–1-1→On

Proof of Theorem alephf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 10084 . . 3 ℵ Fn On
2 alephon 10088 . . . 4 (ℵ‘𝑥) ∈ On
32rgenw 3056 . . 3 𝑥 ∈ On (ℵ‘𝑥) ∈ On
4 ffnfv 7114 . . 3 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On))
51, 3, 4mpbir2an 711 . 2 ℵ:On⟶On
6 aleph11 10103 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) ↔ 𝑥 = 𝑦))
76biimpd 229 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦))
87rgen2 3185 . 2 𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)
9 dff13 7252 . 2 (ℵ:On–1-1→On ↔ (ℵ:On⟶On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)))
105, 8, 9mpbir2an 711 1 ℵ:On–1-1→On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Oncon0 6357   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  cale 9955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-har 9576  df-card 9958  df-aleph 9959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator