| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephf1 | Structured version Visualization version GIF version | ||
| Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10062. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephf1 | ⊢ ℵ:On–1-1→On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 10024 | . . 3 ⊢ ℵ Fn On | |
| 2 | alephon 10028 | . . . 4 ⊢ (ℵ‘𝑥) ∈ On | |
| 3 | 2 | rgenw 3049 | . . 3 ⊢ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On |
| 4 | ffnfv 7093 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On)) | |
| 5 | 1, 3, 4 | mpbir2an 711 | . 2 ⊢ ℵ:On⟶On |
| 6 | aleph11 10043 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) ↔ 𝑥 = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦)) |
| 8 | 7 | rgen2 3178 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦) |
| 9 | dff13 7231 | . 2 ⊢ (ℵ:On–1-1→On ↔ (ℵ:On⟶On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ((ℵ‘𝑥) = (ℵ‘𝑦) → 𝑥 = 𝑦))) | |
| 10 | 5, 8, 9 | mpbir2an 711 | 1 ⊢ ℵ:On–1-1→On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Oncon0 6334 Fn wfn 6508 ⟶wf 6509 –1-1→wf1 6510 ‘cfv 6513 ℵcale 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-oi 9469 df-har 9516 df-card 9898 df-aleph 9899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |