MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord3 Structured version   Visualization version   GIF version

Theorem alephord3 10122
Description: Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephord3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵)))

Proof of Theorem alephord3
StepHypRef Expression
1 alephord2 10120 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ∈ (ℵ‘𝐴)))
21ancoms 458 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ∈ (ℵ‘𝐴)))
32notbid 318 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴 ↔ ¬ (ℵ‘𝐵) ∈ (ℵ‘𝐴)))
4 ontri1 6423 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
5 alephon 10113 . . . 4 (ℵ‘𝐴) ∈ On
6 alephon 10113 . . . 4 (ℵ‘𝐵) ∈ On
7 ontri1 6423 . . . 4 (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ∈ (ℵ‘𝐴)))
85, 6, 7mp2an 692 . . 3 ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ∈ (ℵ‘𝐴))
98a1i 11 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ∈ (ℵ‘𝐴)))
103, 4, 93bitr4d 311 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107  wss 3964  Oncon0 6389  cfv 6566  cale 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-oi 9554  df-har 9601  df-card 9983  df-aleph 9984
This theorem is referenced by:  alephgeom  10126  aleph11  10128  alephexp1  10623  minregex  43538
  Copyright terms: Public domain W3C validator