Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnasclg | Structured version Visualization version GIF version |
Description: The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
rnasclg.a | ⊢ 𝐴 = (algSc‘𝑊) |
rnasclg.o | ⊢ 1 = (1r‘𝑊) |
rnasclg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
rnasclg | ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnasclg.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
2 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2737 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
4 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
5 | rnasclg.o | . . . 4 ⊢ 1 = (1r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | asclfval 20838 | . . 3 ⊢ 𝐴 = (𝑦 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑦( ·𝑠 ‘𝑊) 1 )) |
7 | 6 | rnmpt 5824 | . 2 ⊢ ran 𝐴 = {𝑥 ∣ ∃𝑦 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑦( ·𝑠 ‘𝑊) 1 )} |
8 | eqid 2737 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
9 | 8, 5 | ringidcl 19586 | . . 3 ⊢ (𝑊 ∈ Ring → 1 ∈ (Base‘𝑊)) |
10 | rnasclg.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | 2, 3, 8, 4, 10 | lspsn 20039 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 1 ∈ (Base‘𝑊)) → (𝑁‘{ 1 }) = {𝑥 ∣ ∃𝑦 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑦( ·𝑠 ‘𝑊) 1 )}) |
12 | 9, 11 | sylan2 596 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → (𝑁‘{ 1 }) = {𝑥 ∣ ∃𝑦 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑦( ·𝑠 ‘𝑊) 1 )}) |
13 | 7, 12 | eqtr4id 2797 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 ∃wrex 3062 {csn 4541 ran crn 5552 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 Scalarcsca 16805 ·𝑠 cvsca 16806 1rcur 19516 Ringcrg 19562 LModclmod 19899 LSpanclspn 20008 algSccascl 20814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mgp 19505 df-ur 19517 df-ring 19564 df-lmod 19901 df-lss 19969 df-lsp 20009 df-ascl 20817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |