| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 12920 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | 0zd 12625 |
. 2
⊢ (𝜑 → 0 ∈
ℤ) |
| 3 | | seqex 14044 |
. . 3
⊢ seq0( + ,
𝐻) ∈
V |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → seq0( + , 𝐻) ∈ V) |
| 5 | | mertens.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 6 | | fzfid 14014 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) |
| 7 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝜑) |
| 8 | | elfznn0 13660 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0) |
| 9 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 10 | 7, 8, 9 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ) |
| 11 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑖 = (𝑘 − 𝑗) → (𝐺‘𝑖) = (𝐺‘(𝑘 − 𝑗))) |
| 12 | 11 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑖 = (𝑘 − 𝑗) → ((𝐺‘𝑖) ∈ ℂ ↔ (𝐺‘(𝑘 − 𝑗)) ∈ ℂ)) |
| 13 | | mertens.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
| 14 | | mertens.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 15 | 13, 14 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 16 | 15 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺‘𝑘) ∈ ℂ) |
| 17 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝐺‘𝑘) = (𝐺‘𝑖)) |
| 18 | 17 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑖) ∈ ℂ)) |
| 19 | 18 | cbvralvw 3237 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℕ0 (𝐺‘𝑘) ∈ ℂ ↔ ∀𝑖 ∈ ℕ0
(𝐺‘𝑖) ∈ ℂ) |
| 20 | 16, 19 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ ℕ0 (𝐺‘𝑖) ∈ ℂ) |
| 21 | 20 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑖 ∈ ℕ0 (𝐺‘𝑖) ∈ ℂ) |
| 22 | | fznn0sub 13596 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑘) → (𝑘 − 𝑗) ∈
ℕ0) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈
ℕ0) |
| 24 | 12, 21, 23 | rspcdva 3623 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − 𝑗)) ∈ ℂ) |
| 25 | 10, 24 | mulcld 11281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 26 | 6, 25 | fsumcl 15769 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 27 | 5, 26 | eqeltrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) ∈ ℂ) |
| 28 | 1, 2, 27 | serf 14071 |
. . 3
⊢ (𝜑 → seq0( + , 𝐻):ℕ0⟶ℂ) |
| 29 | 28 | ffvelcdmda 7104 |
. 2
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (seq0( +
, 𝐻)‘𝑚) ∈
ℂ) |
| 30 | | mertens.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) |
| 31 | 30 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = 𝐴) |
| 32 | | mertens.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
| 33 | 32 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ (𝐾‘𝑗) = (abs‘𝐴)) |
| 34 | 9 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
| 35 | 13 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (𝐺‘𝑘) = 𝐵) |
| 36 | 14 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
| 37 | 5 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 38 | | mertens.7 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
| 39 | 38 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq0( + ,
𝐾) ∈ dom ⇝
) |
| 40 | | mertens.8 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
| 41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq0( + ,
𝐺) ∈ dom ⇝
) |
| 42 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 43 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑘 → (𝐺‘𝑙) = (𝐺‘𝑘)) |
| 44 | 43 | cbvsumv 15732 |
. . . . . . . . . . 11
⊢
Σ𝑙 ∈
(ℤ≥‘(𝑖 + 1))(𝐺‘𝑙) = Σ𝑘 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑘) |
| 45 | | fvoveq1 7454 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (ℤ≥‘(𝑖 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
| 46 | 45 | sumeq1d 15736 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 47 | 44, 46 | eqtrid 2789 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 48 | 47 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 49 | 48 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → (𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ 𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 50 | 49 | cbvrexvw 3238 |
. . . . . . 7
⊢
(∃𝑖 ∈
(0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈
(ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 51 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑢 = 𝑧 → (𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 52 | 51 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑢 = 𝑧 → (∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 53 | 50, 52 | bitrid 283 |
. . . . . 6
⊢ (𝑢 = 𝑧 → (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 54 | 53 | cbvabv 2812 |
. . . . 5
⊢ {𝑢 ∣ ∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
| 55 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝐾‘𝑖) = (𝐾‘𝑗)) |
| 56 | 55 | cbvsumv 15732 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
ℕ0 (𝐾‘𝑖) = Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) |
| 57 | 56 | oveq1i 7441 |
. . . . . . . . . 10
⊢
(Σ𝑖 ∈
ℕ0 (𝐾‘𝑖) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) |
| 58 | 57 | oveq2i 7442 |
. . . . . . . . 9
⊢ ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0
(𝐾‘𝑖) + 1)) = ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
| 59 | 58 | breq2i 5151 |
. . . . . . . 8
⊢
((abs‘Σ𝑖
∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ (abs‘Σ𝑖 ∈
(ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 60 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝐺‘𝑖) = (𝐺‘𝑘)) |
| 61 | 60 | cbvsumv 15732 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
(ℤ≥‘(𝑢 + 1))(𝐺‘𝑖) = Σ𝑘 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑘) |
| 62 | | fvoveq1 7454 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑛 → (ℤ≥‘(𝑢 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
| 63 | 62 | sumeq1d 15736 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 64 | 61, 63 | eqtrid 2789 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑛 → Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 65 | 64 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑢 = 𝑛 → (abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 66 | 65 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 67 | 59, 66 | bitrid 283 |
. . . . . . 7
⊢ (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 68 | 67 | cbvralvw 3237 |
. . . . . 6
⊢
(∀𝑢 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 69 | 68 | anbi2i 623 |
. . . . 5
⊢ ((𝑠 ∈ ℕ ∧
∀𝑢 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1))) ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 70 | 31, 33, 34, 35, 36, 37, 39, 41, 42, 54, 69 | mertenslem2 15921 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥) |
| 71 | | eluznn0 12959 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑦)) → 𝑚 ∈ ℕ0) |
| 72 | | fzfid 14014 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(0...𝑚) ∈
Fin) |
| 73 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑) |
| 74 | | elfznn0 13660 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℕ0) |
| 76 | 1, 2, 13, 14, 40 | isumcl 15797 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
| 77 | 76 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 𝐵
∈ ℂ) |
| 78 | 30, 9 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) ∈ ℂ) |
| 79 | 77, 78 | mulcld 11281 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) ∈
ℂ) |
| 80 | 73, 75, 79 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) ∈ ℂ) |
| 81 | | fzfid 14014 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(𝑚 − 𝑗)) ∈ Fin) |
| 82 | | simplll 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝜑) |
| 83 | 74 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝑗 ∈ ℕ0) |
| 84 | 82, 83, 9 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝐴 ∈ ℂ) |
| 85 | | elfznn0 13660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...(𝑚 − 𝑗)) → 𝑘 ∈ ℕ0) |
| 86 | 85 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝑘 ∈ ℕ0) |
| 87 | 82, 86, 15 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐺‘𝑘) ∈ ℂ) |
| 88 | 84, 87 | mulcld 11281 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
| 89 | 81, 88 | fsumcl 15769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
| 90 | 72, 80, 89 | fsumsub 15824 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)))) |
| 91 | 73, 75, 9 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ) |
| 92 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
| 93 | 81, 87 | fsumcl 15769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) ∈ ℂ) |
| 94 | 91, 92, 93 | subdid 11719 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)))) |
| 95 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘((𝑚 − 𝑗) + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1)) |
| 96 | | fznn0sub 13596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑚) → (𝑚 − 𝑗) ∈
ℕ0) |
| 97 | 96 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
| 98 | | peano2nn0 12566 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 − 𝑗) ∈ ℕ0 → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 100 | 99 | nn0zd 12639 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
| 101 | | simplll 775 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
| 102 | | eluznn0 12959 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑚 − 𝑗) + 1) ∈ ℕ0 ∧ 𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 103 | 99, 102 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 104 | 101, 103,
13 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
| 105 | 101, 103,
14 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
| 106 | 40 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ ) |
| 107 | 73, 13 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
| 108 | 73, 14 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 109 | 107, 108 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 110 | 1, 99, 109 | iserex 15693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )) |
| 111 | 106, 110 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
| 112 | 95, 100, 104, 105, 111 | isumcl 15797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
| 113 | 1, 95, 99, 107, 108, 106 | isumsplit 15876 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 114 | 97 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈ ℂ) |
| 115 | | ax-1cn 11213 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℂ |
| 116 | | pncan 11514 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 − 𝑗) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑚 − 𝑗) + 1) − 1) = (𝑚 − 𝑗)) |
| 117 | 114, 115,
116 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (((𝑚 − 𝑗) + 1) − 1) = (𝑚 − 𝑗)) |
| 118 | 117 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(((𝑚 − 𝑗) + 1) − 1)) = (0...(𝑚 − 𝑗))) |
| 119 | 118 | sumeq1d 15736 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚 − 𝑗))𝐵) |
| 120 | 82, 86, 13 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐺‘𝑘) = 𝐵) |
| 121 | 120 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) = Σ𝑘 ∈ (0...(𝑚 − 𝑗))𝐵) |
| 122 | 119, 121 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) |
| 123 | 122 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 124 | 113, 123 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 125 | 93, 112, 124 | mvrladdd 11676 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
| 126 | 125 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 127 | 9, 77 | mulcomd 11282 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0
𝐵) = (Σ𝑘 ∈ ℕ0
𝐵 · 𝐴)) |
| 128 | 30 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴)) |
| 129 | 127, 128 | eqtr4d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0
𝐵) = (Σ𝑘 ∈ ℕ0
𝐵 · (𝐹‘𝑗))) |
| 130 | 73, 75, 129 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 131 | 81, 91, 87 | fsummulc2 15820 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) |
| 132 | 130, 131 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)))) |
| 133 | 94, 126, 132 | 3eqtr3rd 2786 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 134 | 133 | sumeq2dv 15738 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 135 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
| 136 | 135 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 137 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))) |
| 138 | | ovex 7464 |
. . . . . . . . . . . . . . . 16
⊢
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) ∈ V |
| 139 | 136, 137,
138 | fvmpt 7016 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 140 | 75, 139 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 141 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 142 | 141, 1 | eleqtrdi 2851 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
(ℤ≥‘0)) |
| 143 | 140, 142,
80 | fsumser 15766 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚)) |
| 144 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
| 145 | 144 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → (𝐴 · (𝐺‘𝑛)) = (𝐴 · (𝐺‘𝑘))) |
| 146 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑘 − 𝑗) → (𝐺‘𝑛) = (𝐺‘(𝑘 − 𝑗))) |
| 147 | 146 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑘 − 𝑗) → (𝐴 · (𝐺‘𝑛)) = (𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 148 | 88 | anasss 466 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑗 ∈ (0...𝑚) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗)))) → (𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
| 149 | 145, 147,
148 | fsum0diag2 15819 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) = Σ𝑘 ∈ (0...𝑚)Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 150 | | simpll 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → 𝜑) |
| 151 | | elfznn0 13660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0) |
| 152 | 151 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → 𝑘 ∈ ℕ0) |
| 153 | 150, 152,
5 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 154 | 150, 152,
26 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 155 | 153, 142,
154 | fsumser 15766 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝑚)Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) = (seq0( + , 𝐻)‘𝑚)) |
| 156 | 149, 155 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) = (seq0( + , 𝐻)‘𝑚)) |
| 157 | 143, 156 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = ((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) |
| 158 | 90, 134, 157 | 3eqtr3rd 2786 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 159 | 158 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(abs‘((seq0( + , (𝑛
∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) = (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 160 | 159 | breq1d 5153 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((abs‘((seq0( + , (𝑛
∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 161 | 71, 160 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑚 ∈
(ℤ≥‘𝑦))) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 162 | 161 | anassrs 467 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑦)) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 163 | 162 | ralbidva 3176 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 164 | 163 | rexbidva 3177 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 165 | 164 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 166 | 70, 165 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥) |
| 167 | 166 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ0
∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥) |
| 168 | 30 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘(𝐹‘𝑗)) = (abs‘𝐴)) |
| 169 | 32, 168 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘(𝐹‘𝑗))) |
| 170 | 1, 2, 169, 78, 38 | abscvgcvg 15855 |
. . . . 5
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |
| 171 | 1, 2, 30, 9, 170 | isumclim2 15794 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐹) ⇝ Σ𝑗 ∈ ℕ0
𝐴) |
| 172 | 78 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) ∈ ℂ) |
| 173 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) |
| 174 | 173 | eleq1d 2826 |
. . . . . 6
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑗) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
| 175 | 174 | rspccva 3621 |
. . . . 5
⊢
((∀𝑗 ∈
ℕ0 (𝐹‘𝑗) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
| 176 | 172, 175 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
| 177 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
| 178 | 177 | oveq2d 7447 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
| 179 | | ovex 7464 |
. . . . . 6
⊢
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑚)) ∈ V |
| 180 | 178, 137,
179 | fvmpt 7016 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
| 181 | 180 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
| 182 | 1, 2, 76, 171, 176, 181 | isermulc2 15694 |
. . 3
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))) ⇝ (Σ𝑘 ∈ ℕ0
𝐵 · Σ𝑗 ∈ ℕ0
𝐴)) |
| 183 | 1, 2, 30, 9, 170 | isumcl 15797 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 𝐴 ∈ ℂ) |
| 184 | 76, 183 | mulcomd 11282 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴) = (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵)) |
| 185 | 182, 184 | breqtrd 5169 |
. 2
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))) ⇝ (Σ𝑗 ∈ ℕ0
𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |
| 186 | 1, 2, 4, 29, 167, 185 | 2clim 15608 |
1
⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0
𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |