Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones15 Structured version   Visualization version   GIF version

Theorem sticksstones15 40045
Description: Sticks and stones with almost collapsed definitions for positive integers. (Contributed by metakunt, 7-Oct-2024.)
Hypotheses
Ref Expression
sticksstones15.1 (𝜑𝑁 ∈ ℕ0)
sticksstones15.2 (𝜑𝐾 ∈ ℕ0)
sticksstones15.3 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones15 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Distinct variable groups:   𝐴,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hint:   𝐴(𝑔)

Proof of Theorem sticksstones15
Dummy variables 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑓 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones15.1 . 2 (𝜑𝑁 ∈ ℕ0)
2 sticksstones15.2 . 2 (𝜑𝐾 ∈ ℕ0)
3 eqid 2738 . 2 (𝑣𝐴 ↦ (𝑧 ∈ (1...𝐾) ↦ (𝑧 + Σ𝑡 ∈ (1...𝑧)(𝑣𝑡)))) = (𝑣𝐴 ↦ (𝑧 ∈ (1...𝐾) ↦ (𝑧 + Σ𝑡 ∈ (1...𝑧)(𝑣𝑡))))
4 eqid 2738 . 2 (𝑢 ∈ {𝑙 ∣ (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)))} ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑤 ∈ (1...(𝐾 + 1)) ↦ if(𝑤 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑢𝐾)), if(𝑤 = 1, ((𝑢‘1) − 1), (((𝑢𝑤) − (𝑢‘(𝑤 − 1))) − 1)))))) = (𝑢 ∈ {𝑙 ∣ (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)))} ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑤 ∈ (1...(𝐾 + 1)) ↦ if(𝑤 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑢𝐾)), if(𝑤 = 1, ((𝑢‘1) − 1), (((𝑢𝑤) − (𝑢‘(𝑤 − 1))) − 1))))))
5 sticksstones15.3 . 2 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
6 feq1 6565 . . . 4 (𝑙 = 𝑓 → (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
7 fveq1 6755 . . . . . . 7 (𝑙 = 𝑓 → (𝑙𝑥) = (𝑓𝑥))
8 fveq1 6755 . . . . . . 7 (𝑙 = 𝑓 → (𝑙𝑦) = (𝑓𝑦))
97, 8breq12d 5083 . . . . . 6 (𝑙 = 𝑓 → ((𝑙𝑥) < (𝑙𝑦) ↔ (𝑓𝑥) < (𝑓𝑦)))
109imbi2d 340 . . . . 5 (𝑙 = 𝑓 → ((𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)) ↔ (𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
11102ralbidv 3122 . . . 4 (𝑙 = 𝑓 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
126, 11anbi12d 630 . . 3 (𝑙 = 𝑓 → ((𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦))) ↔ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))))
1312cbvabv 2812 . 2 {𝑙 ∣ (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)))} = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
141, 2, 3, 4, 5, 13sticksstones14 40044 1 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  0cn0 12163  ...cfz 13168  Ccbc 13944  chash 13972  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  sticksstones16  40046
  Copyright terms: Public domain W3C validator