Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones15 Structured version   Visualization version   GIF version

Theorem sticksstones15 42253
Description: Sticks and stones with almost collapsed definitions for positive integers. (Contributed by metakunt, 7-Oct-2024.)
Hypotheses
Ref Expression
sticksstones15.1 (𝜑𝑁 ∈ ℕ0)
sticksstones15.2 (𝜑𝐾 ∈ ℕ0)
sticksstones15.3 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones15 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Distinct variable groups:   𝐴,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hint:   𝐴(𝑔)

Proof of Theorem sticksstones15
Dummy variables 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑓 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones15.1 . 2 (𝜑𝑁 ∈ ℕ0)
2 sticksstones15.2 . 2 (𝜑𝐾 ∈ ℕ0)
3 eqid 2731 . 2 (𝑣𝐴 ↦ (𝑧 ∈ (1...𝐾) ↦ (𝑧 + Σ𝑡 ∈ (1...𝑧)(𝑣𝑡)))) = (𝑣𝐴 ↦ (𝑧 ∈ (1...𝐾) ↦ (𝑧 + Σ𝑡 ∈ (1...𝑧)(𝑣𝑡))))
4 eqid 2731 . 2 (𝑢 ∈ {𝑙 ∣ (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)))} ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑤 ∈ (1...(𝐾 + 1)) ↦ if(𝑤 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑢𝐾)), if(𝑤 = 1, ((𝑢‘1) − 1), (((𝑢𝑤) − (𝑢‘(𝑤 − 1))) − 1)))))) = (𝑢 ∈ {𝑙 ∣ (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)))} ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑤 ∈ (1...(𝐾 + 1)) ↦ if(𝑤 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑢𝐾)), if(𝑤 = 1, ((𝑢‘1) − 1), (((𝑢𝑤) − (𝑢‘(𝑤 − 1))) − 1))))))
5 sticksstones15.3 . 2 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
6 feq1 6629 . . . 4 (𝑙 = 𝑓 → (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
7 fveq1 6821 . . . . . . 7 (𝑙 = 𝑓 → (𝑙𝑥) = (𝑓𝑥))
8 fveq1 6821 . . . . . . 7 (𝑙 = 𝑓 → (𝑙𝑦) = (𝑓𝑦))
97, 8breq12d 5102 . . . . . 6 (𝑙 = 𝑓 → ((𝑙𝑥) < (𝑙𝑦) ↔ (𝑓𝑥) < (𝑓𝑦)))
109imbi2d 340 . . . . 5 (𝑙 = 𝑓 → ((𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)) ↔ (𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
11102ralbidv 3196 . . . 4 (𝑙 = 𝑓 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))))
126, 11anbi12d 632 . . 3 (𝑙 = 𝑓 → ((𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦))) ↔ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))))
1312cbvabv 2801 . 2 {𝑙 ∣ (𝑙:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑙𝑥) < (𝑙𝑦)))} = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
141, 2, 3, 4, 5, 13sticksstones14 42252 1 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  ifcif 4472  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cmin 11344  0cn0 12381  ...cfz 13407  Ccbc 14209  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones16  42254
  Copyright terms: Public domain W3C validator