![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones15 | Structured version Visualization version GIF version |
Description: Sticks and stones with almost collapsed definitions for positive integers. (Contributed by metakunt, 7-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones15.1 | β’ (π β π β β0) |
sticksstones15.2 | β’ (π β πΎ β β0) |
sticksstones15.3 | β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} |
Ref | Expression |
---|---|
sticksstones15 | β’ (π β (β―βπ΄) = ((π + πΎ)CπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones15.1 | . 2 β’ (π β π β β0) | |
2 | sticksstones15.2 | . 2 β’ (π β πΎ β β0) | |
3 | eqid 2733 | . 2 β’ (π£ β π΄ β¦ (π§ β (1...πΎ) β¦ (π§ + Ξ£π‘ β (1...π§)(π£βπ‘)))) = (π£ β π΄ β¦ (π§ β (1...πΎ) β¦ (π§ + Ξ£π‘ β (1...π§)(π£βπ‘)))) | |
4 | eqid 2733 | . 2 β’ (π’ β {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} β¦ if(πΎ = 0, {β¨1, πβ©}, (π€ β (1...(πΎ + 1)) β¦ if(π€ = (πΎ + 1), ((π + πΎ) β (π’βπΎ)), if(π€ = 1, ((π’β1) β 1), (((π’βπ€) β (π’β(π€ β 1))) β 1)))))) = (π’ β {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} β¦ if(πΎ = 0, {β¨1, πβ©}, (π€ β (1...(πΎ + 1)) β¦ if(π€ = (πΎ + 1), ((π + πΎ) β (π’βπΎ)), if(π€ = 1, ((π’β1) β 1), (((π’βπ€) β (π’β(π€ β 1))) β 1)))))) | |
5 | sticksstones15.3 | . 2 β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} | |
6 | feq1 6650 | . . . 4 β’ (π = π β (π:(1...πΎ)βΆ(1...(π + πΎ)) β π:(1...πΎ)βΆ(1...(π + πΎ)))) | |
7 | fveq1 6842 | . . . . . . 7 β’ (π = π β (πβπ₯) = (πβπ₯)) | |
8 | fveq1 6842 | . . . . . . 7 β’ (π = π β (πβπ¦) = (πβπ¦)) | |
9 | 7, 8 | breq12d 5119 | . . . . . 6 β’ (π = π β ((πβπ₯) < (πβπ¦) β (πβπ₯) < (πβπ¦))) |
10 | 9 | imbi2d 341 | . . . . 5 β’ (π = π β ((π₯ < π¦ β (πβπ₯) < (πβπ¦)) β (π₯ < π¦ β (πβπ₯) < (πβπ¦)))) |
11 | 10 | 2ralbidv 3209 | . . . 4 β’ (π = π β (βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)) β βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))) |
12 | 6, 11 | anbi12d 632 | . . 3 β’ (π = π β ((π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦))) β (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦))))) |
13 | 12 | cbvabv 2806 | . 2 β’ {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} = {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} |
14 | 1, 2, 3, 4, 5, 13 | sticksstones14 40614 | 1 β’ (π β (β―βπ΄) = ((π + πΎ)CπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 {cab 2710 βwral 3061 ifcif 4487 {csn 4587 β¨cop 4593 class class class wbr 5106 β¦ cmpt 5189 βΆwf 6493 βcfv 6497 (class class class)co 7358 0cc0 11056 1c1 11057 + caddc 11059 < clt 11194 β cmin 11390 β0cn0 12418 ...cfz 13430 Ccbc 14208 β―chash 14236 Ξ£csu 15576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-oadd 8417 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-inf 9384 df-oi 9451 df-dju 9842 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-ico 13276 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-fac 14180 df-bc 14209 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-sum 15577 |
This theorem is referenced by: sticksstones16 40616 |
Copyright terms: Public domain | W3C validator |