Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph3 Structured version   Visualization version   GIF version

Theorem eldioph3 42761
Description: Inference version of eldioph3b 42760 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eldioph3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑃,𝑢

Proof of Theorem eldioph3
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → 𝑁 ∈ ℕ0)
2 simpr 484 . . 3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → 𝑃 ∈ (mzPoly‘ℕ))
3 eqidd 2731 . . 3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
4 fveq1 6860 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
54eqeq1d 2732 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑏) = 0 ↔ (𝑃𝑏) = 0))
65anbi2d 630 . . . . . . 7 (𝑝 = 𝑃 → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0) ↔ (𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
76rexbidv 3158 . . . . . 6 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
87abbidv 2796 . . . . 5 (𝑝 = 𝑃 → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)})
9 eqeq1 2734 . . . . . . . . 9 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
109anbi1d 631 . . . . . . . 8 (𝑎 = 𝑡 → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ (𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
1110rexbidv 3158 . . . . . . 7 (𝑎 = 𝑡 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m ℕ)(𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
12 reseq1 5947 . . . . . . . . . 10 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
1312eqeq2d 2741 . . . . . . . . 9 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
14 fveqeq2 6870 . . . . . . . . 9 (𝑏 = 𝑢 → ((𝑃𝑏) = 0 ↔ (𝑃𝑢) = 0))
1513, 14anbi12d 632 . . . . . . . 8 (𝑏 = 𝑢 → ((𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
1615cbvrexvw 3217 . . . . . . 7 (∃𝑏 ∈ (ℕ0m ℕ)(𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0))
1711, 16bitrdi 287 . . . . . 6 (𝑎 = 𝑡 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
1817cbvabv 2800 . . . . 5 {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}
198, 18eqtrdi 2781 . . . 4 (𝑝 = 𝑃 → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
2019rspceeqv 3614 . . 3 ((𝑃 ∈ (mzPoly‘ℕ) ∧ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)})
212, 3, 20syl2anc 584 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)})
22 eldioph3b 42760 . 2 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)}))
231, 21, 22sylanbrc 583 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  cres 5643  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076  cn 12193  0cn0 12449  ...cfz 13475  mzPolycmzp 42717  Diophcdioph 42750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-mzpcl 42718  df-mzp 42719  df-dioph 42751
This theorem is referenced by:  diophrex  42770
  Copyright terms: Public domain W3C validator