Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph3 Structured version   Visualization version   GIF version

Theorem eldioph3 40504
Description: Inference version of eldioph3b 40503 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eldioph3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑃,𝑢

Proof of Theorem eldioph3
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → 𝑁 ∈ ℕ0)
2 simpr 484 . . 3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → 𝑃 ∈ (mzPoly‘ℕ))
3 eqidd 2739 . . 3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
4 fveq1 6755 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
54eqeq1d 2740 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑏) = 0 ↔ (𝑃𝑏) = 0))
65anbi2d 628 . . . . . . 7 (𝑝 = 𝑃 → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0) ↔ (𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
76rexbidv 3225 . . . . . 6 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
87abbidv 2808 . . . . 5 (𝑝 = 𝑃 → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)})
9 eqeq1 2742 . . . . . . . . 9 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
109anbi1d 629 . . . . . . . 8 (𝑎 = 𝑡 → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ (𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
1110rexbidv 3225 . . . . . . 7 (𝑎 = 𝑡 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m ℕ)(𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
12 reseq1 5874 . . . . . . . . . 10 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
1312eqeq2d 2749 . . . . . . . . 9 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
14 fveqeq2 6765 . . . . . . . . 9 (𝑏 = 𝑢 → ((𝑃𝑏) = 0 ↔ (𝑃𝑢) = 0))
1513, 14anbi12d 630 . . . . . . . 8 (𝑏 = 𝑢 → ((𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
1615cbvrexvw 3373 . . . . . . 7 (∃𝑏 ∈ (ℕ0m ℕ)(𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0))
1711, 16bitrdi 286 . . . . . 6 (𝑎 = 𝑡 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
1817cbvabv 2812 . . . . 5 {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}
198, 18eqtrdi 2795 . . . 4 (𝑝 = 𝑃 → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
2019rspceeqv 3567 . . 3 ((𝑃 ∈ (mzPoly‘ℕ) ∧ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)})
212, 3, 20syl2anc 583 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)})
22 eldioph3b 40503 . 2 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)}))
231, 21, 22sylanbrc 582 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  cres 5582  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  1c1 10803  cn 11903  0cn0 12163  ...cfz 13168  mzPolycmzp 40460  Diophcdioph 40493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-mzpcl 40461  df-mzp 40462  df-dioph 40494
This theorem is referenced by:  diophrex  40513
  Copyright terms: Public domain W3C validator