Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph3 Structured version   Visualization version   GIF version

Theorem eldioph3 42753
Description: Inference version of eldioph3b 42752 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eldioph3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑃,𝑢

Proof of Theorem eldioph3
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → 𝑁 ∈ ℕ0)
2 simpr 484 . . 3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → 𝑃 ∈ (mzPoly‘ℕ))
3 eqidd 2735 . . 3 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
4 fveq1 6905 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑏) = (𝑃𝑏))
54eqeq1d 2736 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑏) = 0 ↔ (𝑃𝑏) = 0))
65anbi2d 630 . . . . . . 7 (𝑝 = 𝑃 → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0) ↔ (𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
76rexbidv 3176 . . . . . 6 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
87abbidv 2805 . . . . 5 (𝑝 = 𝑃 → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)})
9 eqeq1 2738 . . . . . . . . 9 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
109anbi1d 631 . . . . . . . 8 (𝑎 = 𝑡 → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ (𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
1110rexbidv 3176 . . . . . . 7 (𝑎 = 𝑡 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m ℕ)(𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)))
12 reseq1 5993 . . . . . . . . . 10 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
1312eqeq2d 2745 . . . . . . . . 9 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
14 fveqeq2 6915 . . . . . . . . 9 (𝑏 = 𝑢 → ((𝑃𝑏) = 0 ↔ (𝑃𝑢) = 0))
1513, 14anbi12d 632 . . . . . . . 8 (𝑏 = 𝑢 → ((𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
1615cbvrexvw 3235 . . . . . . 7 (∃𝑏 ∈ (ℕ0m ℕ)(𝑡 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0))
1711, 16bitrdi 287 . . . . . 6 (𝑎 = 𝑡 → (∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0) ↔ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
1817cbvabv 2809 . . . . 5 {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑃𝑏) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}
198, 18eqtrdi 2790 . . . 4 (𝑝 = 𝑃 → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
2019rspceeqv 3644 . . 3 ((𝑃 ∈ (mzPoly‘ℕ) ∧ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)})
212, 3, 20syl2anc 584 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)})
22 eldioph3b 42752 . 2 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ){𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m ℕ)(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ (𝑝𝑏) = 0)}))
231, 21, 22sylanbrc 583 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {cab 2711  wrex 3067  cres 5690  cfv 6562  (class class class)co 7430  m cmap 8864  0cc0 11152  1c1 11153  cn 12263  0cn0 12523  ...cfz 13543  mzPolycmzp 42709  Diophcdioph 42742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366  df-mzpcl 42710  df-mzp 42711  df-dioph 42743
This theorem is referenced by:  diophrex  42762
  Copyright terms: Public domain W3C validator