Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme25cl | Structured version Visualization version GIF version |
Description: Show closure of the unique element in cdleme25c 38395. (Contributed by NM, 2-Feb-2013.) |
Ref | Expression |
---|---|
cdleme24.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleme24.l | ⊢ ≤ = (le‘𝐾) |
cdleme24.j | ⊢ ∨ = (join‘𝐾) |
cdleme24.m | ⊢ ∧ = (meet‘𝐾) |
cdleme24.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme24.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme24.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme24.f | ⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdleme24.n | ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) |
cdleme25cl.i | ⊢ 𝐼 = (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
Ref | Expression |
---|---|
cdleme25cl | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐼 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme25cl.i | . 2 ⊢ 𝐼 = (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) | |
2 | cdleme24.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdleme24.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | cdleme24.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | cdleme24.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
6 | cdleme24.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdleme24.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdleme24.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
9 | cdleme24.f | . . . 4 ⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
10 | cdleme24.n | . . . 4 ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme25c 38395 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ∃!𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
12 | riotacl 7270 | . . 3 ⊢ (∃!𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) → (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) ∈ 𝐵) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) ∈ 𝐵) |
14 | 1, 13 | eqeltrid 2838 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐼 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∀wral 3059 ∃!wreu 3219 class class class wbr 5077 ‘cfv 6447 ℩crio 7251 (class class class)co 7295 Basecbs 16940 lecple 16997 joincjn 18057 meetcmee 18058 Atomscatm 37303 HLchlt 37390 LHypclh 38024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-p1 18172 df-lat 18178 df-clat 18245 df-oposet 37216 df-ol 37218 df-oml 37219 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-llines 37538 df-lplanes 37539 df-lvols 37540 df-lines 37541 df-psubsp 37543 df-pmap 37544 df-padd 37836 df-lhyp 38028 |
This theorem is referenced by: cdleme26e 38399 cdleme26eALTN 38401 cdleme26fALTN 38402 cdleme26f 38403 cdleme26f2ALTN 38404 cdleme26f2 38405 cdleme27cl 38406 cdlemefs27cl 38453 cdlemefs32sn1aw 38454 cdleme43fsv1snlem 38460 cdleme41sn3a 38473 cdleme40m 38507 cdleme40n 38508 |
Copyright terms: Public domain | W3C validator |