Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
2 | | simp21 1205 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
3 | | simp22 1206 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β π΄ β§ Β¬ π
β€ π)) |
4 | | cdlemef46g.b |
. . . . 5
β’ π΅ = (BaseβπΎ) |
5 | | cdlemef46g.l |
. . . . 5
β’ β€ =
(leβπΎ) |
6 | | cdlemef46g.j |
. . . . 5
β’ β¨ =
(joinβπΎ) |
7 | | cdlemef46g.m |
. . . . 5
β’ β§ =
(meetβπΎ) |
8 | | cdlemef46g.a |
. . . . 5
β’ π΄ = (AtomsβπΎ) |
9 | | cdlemef46g.h |
. . . . 5
β’ π» = (LHypβπΎ) |
10 | | cdlemef46g.u |
. . . . 5
β’ π = ((π β¨ π) β§ π) |
11 | | cdlemef46g.d |
. . . . 5
β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
12 | | cdlemefs46g.e |
. . . . 5
β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
13 | | cdlemef46g.f |
. . . . 5
β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdleme46fvaw 39676 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π)) β ((πΉβπ
) β π΄ β§ Β¬ (πΉβπ
) β€ π)) |
15 | 1, 3, 14 | syl2anc 583 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΉβπ
) β π΄ β§ Β¬ (πΉβπ
) β€ π)) |
16 | | simp23 1207 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
17 | | simp3l 1200 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β€ (π β¨ π)) |
18 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdleme46fsvlpq 39680 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ π
β€ (π β¨ π)) β (πΉβπ
) β€ (π β¨ π)) |
19 | 1, 2, 3, 17, 18 | syl121anc 1374 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉβπ
) β€ (π β¨ π)) |
20 | | simp3r 1201 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) |
21 | | cdlemef46.v |
. . . 4
β’ π = ((π β¨ π) β§ π) |
22 | | cdlemef46.n |
. . . 4
β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
23 | | cdlemefs46.o |
. . . 4
β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
24 | | cdlemef46.g |
. . . 4
β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
25 | 4, 5, 6, 7, 8, 9, 21, 22, 23, 24 | cdlemeg47rv2 39685 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ ((πΉβπ
) β π΄ β§ Β¬ (πΉβπ
) β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉβπ
) β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβ(πΉβπ
)) = ((π β¨ π) β§ ((πΊβπ) β¨ (((πΉβπ
) β¨ π) β§ π)))) |
26 | 1, 2, 15, 16, 19, 20, 25 | syl132anc 1387 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβ(πΉβπ
)) = ((π β¨ π) β§ ((πΊβπ) β¨ (((πΉβπ
) β¨ π) β§ π)))) |
27 | | simp11l 1283 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β HL) |
28 | | simp12l 1285 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
29 | | simp13l 1287 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
30 | 6, 8 | hlatjcom 38542 |
. . . 4
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
31 | 27, 28, 29, 30 | syl3anc 1370 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) = (π β¨ π)) |
32 | | cdlemeg46.x |
. . . . 5
β’ π = (((πΉβπ
) β¨ π) β§ π) |
33 | 32 | oveq2i 7423 |
. . . 4
β’ ((πΊβπ) β¨ π) = ((πΊβπ) β¨ (((πΉβπ
) β¨ π) β§ π)) |
34 | 33 | a1i 11 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΊβπ) β¨ π) = ((πΊβπ) β¨ (((πΉβπ
) β¨ π) β§ π))) |
35 | 31, 34 | oveq12d 7430 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ ((πΊβπ) β¨ π)) = ((π β¨ π) β§ ((πΊβπ) β¨ (((πΉβπ
) β¨ π) β§ π)))) |
36 | 26, 35 | eqtr4d 2774 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβ(πΉβπ
)) = ((π β¨ π) β§ ((πΊβπ) β¨ π))) |