| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemftr1 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma G of [Crawley] p. 116, sixth line of third paragraph on p. 117: there is "a translation h, different from the identity, such that tr h ≠ tr f." (Contributed by NM, 25-Jul-2013.) |
| Ref | Expression |
|---|---|
| cdlemftr.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemftr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemftr.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemftr.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemftr1 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemftr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemftr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | cdlemftr.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | cdlemftr.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | cdlemftr2 40506 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑋)) |
| 6 | 3simpa 1148 | . . 3 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑋) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋)) | |
| 7 | 6 | reximi 3073 | . 2 ⊢ (∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑋) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋)) |
| 8 | 5, 7 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 I cid 5544 ↾ cres 5653 ‘cfv 6527 Basecbs 17213 HLchlt 39289 LHypclh 39924 LTrncltrn 40041 trLctrl 40098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-riotaBAD 38892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-undef 8266 df-map 8836 df-proset 18291 df-poset 18310 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 39115 df-ol 39117 df-oml 39118 df-covers 39205 df-ats 39206 df-atl 39237 df-cvlat 39261 df-hlat 39290 df-llines 39438 df-lplanes 39439 df-lvols 39440 df-lines 39441 df-psubsp 39443 df-pmap 39444 df-padd 39736 df-lhyp 39928 df-laut 39929 df-ldil 40044 df-ltrn 40045 df-trl 40099 |
| This theorem is referenced by: cdlemftr0 40508 cdlemg48 40677 cdlemk19x 40883 |
| Copyright terms: Public domain | W3C validator |