Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr0 Structured version   Visualization version   GIF version

Theorem cdlemftr0 40677
Description: Special case of cdlemf 40672 showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemftr0.b 𝐵 = (Base‘𝐾)
cdlemftr0.h 𝐻 = (LHyp‘𝐾)
cdlemftr0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
Distinct variable groups:   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr0
StepHypRef Expression
1 cdlemftr0.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemftr0.h . . 3 𝐻 = (LHyp‘𝐾)
3 cdlemftr0.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2731 . . 3 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr1 40676 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ))
6 simpl 482 . . 3 ((𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ) → 𝑓 ≠ ( I ↾ 𝐵))
76reximi 3070 . 2 (∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
85, 7syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056   I cid 5508  cres 5616  cfv 6481  Basecbs 17120  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  trLctrl 40267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268
This theorem is referenced by:  tendo0mul  40935  tendo0mulr  40936  tendo1ne0  40937  tendoconid  40938  cdleml4N  41088  erngdv  41102  erngdv-rN  41110
  Copyright terms: Public domain W3C validator