Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr0 Structured version   Visualization version   GIF version

Theorem cdlemftr0 40529
Description: Special case of cdlemf 40524 showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemftr0.b 𝐵 = (Base‘𝐾)
cdlemftr0.h 𝐻 = (LHyp‘𝐾)
cdlemftr0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
Distinct variable groups:   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr0
StepHypRef Expression
1 cdlemftr0.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemftr0.h . . 3 𝐻 = (LHyp‘𝐾)
3 cdlemftr0.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2734 . . 3 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr1 40528 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ))
6 simpl 482 . . 3 ((𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ) → 𝑓 ≠ ( I ↾ 𝐵))
76reximi 3073 . 2 (∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
85, 7syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059   I cid 5557  cres 5667  cfv 6541  Basecbs 17229  HLchlt 39310  LHypclh 39945  LTrncltrn 40062  trLctrl 40119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-undef 8280  df-map 8850  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120
This theorem is referenced by:  tendo0mul  40787  tendo0mulr  40788  tendo1ne0  40789  tendoconid  40790  cdleml4N  40940  erngdv  40954  erngdv-rN  40962
  Copyright terms: Public domain W3C validator