Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr0 Structured version   Visualization version   GIF version

Theorem cdlemftr0 40551
Description: Special case of cdlemf 40546 showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemftr0.b 𝐵 = (Base‘𝐾)
cdlemftr0.h 𝐻 = (LHyp‘𝐾)
cdlemftr0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
Distinct variable groups:   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr0
StepHypRef Expression
1 cdlemftr0.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemftr0.h . . 3 𝐻 = (LHyp‘𝐾)
3 cdlemftr0.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2729 . . 3 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr1 40550 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ))
6 simpl 482 . . 3 ((𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ) → 𝑓 ≠ ( I ↾ 𝐵))
76reximi 3067 . 2 (∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ≠ I ) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
85, 7syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   I cid 5513  cres 5621  cfv 6482  Basecbs 17120  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  tendo0mul  40809  tendo0mulr  40810  tendo1ne0  40811  tendoconid  40812  cdleml4N  40962  erngdv  40976  erngdv-rN  40984
  Copyright terms: Public domain W3C validator