![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemftr2 | Structured version Visualization version GIF version |
Description: Special case of cdlemf 40543 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.) |
Ref | Expression |
---|---|
cdlemftr.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemftr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemftr.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemftr.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemftr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemftr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemftr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdlemftr.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | cdlemftr.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemftr3 40545 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌))) |
6 | simpl 482 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵)) | |
7 | simpr1 1195 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑋) | |
8 | simpr2 1196 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑌) | |
9 | 6, 7, 8 | 3jca 1129 | . . 3 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
10 | 9 | reximi 3083 | . 2 ⊢ (∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 ∃wrex 3069 I cid 5575 ↾ cres 5685 ‘cfv 6559 Basecbs 17243 HLchlt 39329 LHypclh 39964 LTrncltrn 40081 trLctrl 40138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-riotaBAD 38932 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-undef 8294 df-map 8864 df-proset 18336 df-poset 18355 df-plt 18371 df-lub 18387 df-glb 18388 df-join 18389 df-meet 18390 df-p0 18466 df-p1 18467 df-lat 18473 df-clat 18540 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39478 df-lplanes 39479 df-lvols 39480 df-lines 39481 df-psubsp 39483 df-pmap 39484 df-padd 39776 df-lhyp 39968 df-laut 39969 df-ldil 40084 df-ltrn 40085 df-trl 40139 |
This theorem is referenced by: cdlemftr1 40547 cdlemk26b-3 40885 cdlemk29-3 40891 cdlemk38 40895 cdlemkid5 40915 cdlemkid 40916 cdlemk55b 40940 |
Copyright terms: Public domain | W3C validator |