![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemftr2 | Structured version Visualization version GIF version |
Description: Special case of cdlemf 40092 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.) |
Ref | Expression |
---|---|
cdlemftr.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemftr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemftr.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemftr.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemftr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemftr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemftr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdlemftr.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | cdlemftr.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemftr3 40094 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌))) |
6 | simpl 481 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵)) | |
7 | simpr1 1191 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑋) | |
8 | simpr2 1192 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑌) | |
9 | 6, 7, 8 | 3jca 1125 | . . 3 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
10 | 9 | reximi 3074 | . 2 ⊢ (∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∃wrex 3060 I cid 5569 ↾ cres 5674 ‘cfv 6543 Basecbs 17179 HLchlt 38878 LHypclh 39513 LTrncltrn 39630 trLctrl 39687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-riotaBAD 38481 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7991 df-2nd 7992 df-undef 8277 df-map 8845 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-oposet 38704 df-ol 38706 df-oml 38707 df-covers 38794 df-ats 38795 df-atl 38826 df-cvlat 38850 df-hlat 38879 df-llines 39027 df-lplanes 39028 df-lvols 39029 df-lines 39030 df-psubsp 39032 df-pmap 39033 df-padd 39325 df-lhyp 39517 df-laut 39518 df-ldil 39633 df-ltrn 39634 df-trl 39688 |
This theorem is referenced by: cdlemftr1 40096 cdlemk26b-3 40434 cdlemk29-3 40440 cdlemk38 40444 cdlemkid5 40464 cdlemkid 40465 cdlemk55b 40489 |
Copyright terms: Public domain | W3C validator |