Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr2 Structured version   Visualization version   GIF version

Theorem cdlemftr2 40510
Description: Special case of cdlemf 40507 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr2
StepHypRef Expression
1 cdlemftr.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemftr.h . . 3 𝐻 = (LHyp‘𝐾)
3 cdlemftr.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdlemftr.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr3 40509 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)))
6 simpl 482 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵))
7 simpr1 1192 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑅𝑓) ≠ 𝑋)
8 simpr2 1193 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑅𝑓) ≠ 𝑌)
96, 7, 83jca 1126 . . 3 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
109reximi 3080 . 2 (∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
115, 10syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1535  wcel 2104  wne 2936  wrex 3066   I cid 5575  cres 5685  cfv 6558  Basecbs 17234  HLchlt 39293  LHypclh 39928  LTrncltrn 40045  trLctrl 40102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-riotaBAD 38896
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-1st 8007  df-2nd 8008  df-undef 8291  df-map 8861  df-proset 18341  df-poset 18359  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39119  df-ol 39121  df-oml 39122  df-covers 39209  df-ats 39210  df-atl 39241  df-cvlat 39265  df-hlat 39294  df-llines 39442  df-lplanes 39443  df-lvols 39444  df-lines 39445  df-psubsp 39447  df-pmap 39448  df-padd 39740  df-lhyp 39932  df-laut 39933  df-ldil 40048  df-ltrn 40049  df-trl 40103
This theorem is referenced by:  cdlemftr1  40511  cdlemk26b-3  40849  cdlemk29-3  40855  cdlemk38  40859  cdlemkid5  40879  cdlemkid  40880  cdlemk55b  40904
  Copyright terms: Public domain W3C validator