Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr2 Structured version   Visualization version   GIF version

Theorem cdlemftr2 40278
Description: Special case of cdlemf 40275 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr2
StepHypRef Expression
1 cdlemftr.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemftr.h . . 3 𝐻 = (LHyp‘𝐾)
3 cdlemftr.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdlemftr.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr3 40277 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)))
6 simpl 481 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵))
7 simpr1 1191 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑅𝑓) ≠ 𝑋)
8 simpr2 1192 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑅𝑓) ≠ 𝑌)
96, 7, 83jca 1125 . . 3 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
109reximi 3074 . 2 (∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
115, 10syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060   I cid 5571  cres 5676  cfv 6546  Basecbs 17208  HLchlt 39061  LHypclh 39696  LTrncltrn 39813  trLctrl 39870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-riotaBAD 38664
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-undef 8280  df-map 8849  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-oposet 38887  df-ol 38889  df-oml 38890  df-covers 38977  df-ats 38978  df-atl 39009  df-cvlat 39033  df-hlat 39062  df-llines 39210  df-lplanes 39211  df-lvols 39212  df-lines 39213  df-psubsp 39215  df-pmap 39216  df-padd 39508  df-lhyp 39700  df-laut 39701  df-ldil 39816  df-ltrn 39817  df-trl 39871
This theorem is referenced by:  cdlemftr1  40279  cdlemk26b-3  40617  cdlemk29-3  40623  cdlemk38  40627  cdlemkid5  40647  cdlemkid  40648  cdlemk55b  40672
  Copyright terms: Public domain W3C validator