Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr2 Structured version   Visualization version   GIF version

Theorem cdlemftr2 40095
Description: Special case of cdlemf 40092 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr2
StepHypRef Expression
1 cdlemftr.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemftr.h . . 3 𝐻 = (LHyp‘𝐾)
3 cdlemftr.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdlemftr.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr3 40094 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)))
6 simpl 481 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵))
7 simpr1 1191 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑅𝑓) ≠ 𝑋)
8 simpr2 1192 . . . 4 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑅𝑓) ≠ 𝑌)
96, 7, 83jca 1125 . . 3 ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
109reximi 3074 . 2 (∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑌)) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
115, 10syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wrex 3060   I cid 5569  cres 5674  cfv 6543  Basecbs 17179  HLchlt 38878  LHypclh 39513  LTrncltrn 39630  trLctrl 39687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-riotaBAD 38481
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-undef 8277  df-map 8845  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027  df-lplanes 39028  df-lvols 39029  df-lines 39030  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517  df-laut 39518  df-ldil 39633  df-ltrn 39634  df-trl 39688
This theorem is referenced by:  cdlemftr1  40096  cdlemk26b-3  40434  cdlemk29-3  40440  cdlemk38  40444  cdlemkid5  40464  cdlemkid  40465  cdlemk55b  40489
  Copyright terms: Public domain W3C validator