Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemftr2 | Structured version Visualization version GIF version |
Description: Special case of cdlemf 38577 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.) |
Ref | Expression |
---|---|
cdlemftr.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemftr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemftr.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemftr.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemftr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemftr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemftr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdlemftr.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | cdlemftr.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemftr3 38579 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌))) |
6 | simpl 483 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵)) | |
7 | simpr1 1193 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑋) | |
8 | simpr2 1194 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑌) | |
9 | 6, 7, 8 | 3jca 1127 | . . 3 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
10 | 9 | reximi 3178 | . 2 ⊢ (∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: cdlemftr1 38581 cdlemk26b-3 38919 cdlemk29-3 38925 cdlemk38 38929 cdlemkid5 38949 cdlemkid 38950 cdlemk55b 38974 |
Copyright terms: Public domain | W3C validator |