| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg10b | Structured version Visualization version GIF version | ||
| Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? (Contributed by NM, 4-May-2013.) |
| Ref | Expression |
|---|---|
| cdlemg8.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg8.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg8.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemg10b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg8.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | cdlemg8.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | cdlemg8.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemg8.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemg8.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemg8.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 7 | eqid 2733 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | cdlemg2m 40776 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 lecple 17175 joincjn 18225 meetcmee 18226 Atomscatm 39435 HLchlt 39522 LHypclh 40156 LTrncltrn 40273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-undef 8212 df-map 8761 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 |
| This theorem is referenced by: cdlemg10c 40811 |
| Copyright terms: Public domain | W3C validator |