Proof of Theorem cdlemg10bALTN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1203 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ HL) | 
| 2 |  | simp12 1204 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | 
| 3 | 1, 2 | jca 511 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 4 |  | 3simpc 1150 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | 
| 5 |  | simp13 1205 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | 
| 6 |  | cdlemg8.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | cdlemg8.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 |  | cdlemg8.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 9 |  | cdlemg8.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 10 |  | cdlemg8.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 11 |  | cdlemg8.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 12 |  | eqid 2736 | . . . . 5
⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 13 | 6, 7, 8, 9, 10, 11, 12 | cdlemg2k 40604 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 14 | 3, 4, 5, 13 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 15 | 14 | oveq1d 7447 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = (((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑊)) | 
| 16 |  | simp2 1137 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 17 | 8, 10, 6, 7 | ltrnel 40142 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) | 
| 18 | 3, 5, 16, 17 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) | 
| 19 |  | eqid 2736 | . . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 20 | 8, 11, 19, 10, 6 | lhpmat 40033 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = (0.‘𝐾)) | 
| 21 | 3, 18, 20 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = (0.‘𝐾)) | 
| 22 | 21 | oveq1d 7447 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝐹‘𝑃) ∧ 𝑊) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 23 |  | simp2l 1199 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | 
| 24 | 8, 10, 6, 7 | ltrnat 40143 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) | 
| 25 | 3, 5, 23, 24 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) ∈ 𝐴) | 
| 26 | 1 | hllatd 39366 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ Lat) | 
| 27 |  | simp3l 1201 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑄 ∈ 𝐴) | 
| 28 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 29 | 28, 9, 10 | hlatjcl 39369 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 30 | 1, 23, 27, 29 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 31 | 28, 6 | lhpbase 40001 | . . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 32 | 2, 31 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) | 
| 33 | 28, 11 | latmcl 18486 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) | 
| 34 | 26, 30, 32, 33 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) | 
| 35 | 28, 8, 11 | latmle2 18511 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) | 
| 36 | 26, 30, 32, 35 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) | 
| 37 | 28, 8, 9, 11, 10 | atmod4i2 39870 | . . . 4
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) → (((𝐹‘𝑃) ∧ 𝑊) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑊)) | 
| 38 | 1, 25, 34, 32, 36, 37 | syl131anc 1384 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝐹‘𝑃) ∧ 𝑊) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑊)) | 
| 39 |  | hlol 39363 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 40 | 1, 39 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ OL) | 
| 41 | 28, 9, 19 | olj02 39228 | . . . 4
⊢ ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | 
| 42 | 40, 34, 41 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | 
| 43 | 22, 38, 42 | 3eqtr3d 2784 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | 
| 44 | 15, 43 | eqtrd 2776 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |