Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg10bALTN Structured version   Visualization version   GIF version

Theorem cdlemg10bALTN 40161
Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m 40129 and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg8.l ≀ = (leβ€˜πΎ)
cdlemg8.j ∨ = (joinβ€˜πΎ)
cdlemg8.m ∧ = (meetβ€˜πΎ)
cdlemg8.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg8.h 𝐻 = (LHypβ€˜πΎ)
cdlemg8.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg10bALTN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ∧ π‘Š) = ((𝑃 ∨ 𝑄) ∧ π‘Š))

Proof of Theorem cdlemg10bALTN
StepHypRef Expression
1 simp11 1200 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
2 simp12 1201 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
31, 2jca 510 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 3simpc 1147 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
5 simp13 1202 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
6 cdlemg8.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
7 cdlemg8.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
8 cdlemg8.l . . . . 5 ≀ = (leβ€˜πΎ)
9 cdlemg8.j . . . . 5 ∨ = (joinβ€˜πΎ)
10 cdlemg8.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
11 cdlemg8.m . . . . 5 ∧ = (meetβ€˜πΎ)
12 eqid 2725 . . . . 5 ((𝑃 ∨ 𝑄) ∧ π‘Š) = ((𝑃 ∨ 𝑄) ∧ π‘Š)
136, 7, 8, 9, 10, 11, 12cdlemg2k 40126 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
143, 4, 5, 13syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
1514oveq1d 7428 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ∧ π‘Š) = (((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∧ π‘Š))
16 simp2 1134 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
178, 10, 6, 7ltrnel 39664 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
183, 5, 16, 17syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
19 eqid 2725 . . . . . 6 (0.β€˜πΎ) = (0.β€˜πΎ)
208, 11, 19, 10, 6lhpmat 39555 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = (0.β€˜πΎ))
213, 18, 20syl2anc 582 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = (0.β€˜πΎ))
2221oveq1d 7428 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((πΉβ€˜π‘ƒ) ∧ π‘Š) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((0.β€˜πΎ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
23 simp2l 1196 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
248, 10, 6, 7ltrnat 39665 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
253, 5, 23, 24syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
261hllatd 38888 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
27 simp3l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝑄 ∈ 𝐴)
28 eqid 2725 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2928, 9, 10hlatjcl 38891 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
301, 23, 27, 29syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3128, 6lhpbase 39523 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
322, 31syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
3328, 11latmcl 18426 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
3426, 30, 32, 33syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
3528, 8, 11latmle2 18451 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
3626, 30, 32, 35syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
3728, 8, 9, 11, 10atmod4i2 39392 . . . 4 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š) β†’ (((πΉβ€˜π‘ƒ) ∧ π‘Š) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = (((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∧ π‘Š))
381, 25, 34, 32, 36, 37syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((πΉβ€˜π‘ƒ) ∧ π‘Š) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = (((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∧ π‘Š))
39 hlol 38885 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
401, 39syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐾 ∈ OL)
4128, 9, 19olj02 38750 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
4240, 34, 41syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((0.β€˜πΎ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
4322, 38, 423eqtr3d 2773 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∧ π‘Š) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
4415, 43eqtrd 2765 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ∧ π‘Š) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  Basecbs 17174  lecple 17234  joincjn 18297  meetcmee 18298  0.cp0 18409  Latclat 18417  OLcol 38698  Atomscatm 38787  HLchlt 38874  LHypclh 39509  LTrncltrn 39626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-riotaBAD 38477
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-undef 8272  df-map 8840  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-p1 18412  df-lat 18418  df-clat 18485  df-oposet 38700  df-ol 38702  df-oml 38703  df-covers 38790  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875  df-llines 39023  df-lplanes 39024  df-lvols 39025  df-lines 39026  df-psubsp 39028  df-pmap 39029  df-padd 39321  df-lhyp 39513  df-laut 39514  df-ldil 39629  df-ltrn 39630  df-trl 39684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator