![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2dN | Structured version Visualization version GIF version |
Description: This theorem can be used to shorten πΊ = hypothesis. TODO: Fix comment. (Contributed by NM, 21-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemg2.b | β’ π΅ = (BaseβπΎ) |
cdlemg2.l | β’ β€ = (leβπΎ) |
cdlemg2.j | β’ β¨ = (joinβπΎ) |
cdlemg2.m | β’ β§ = (meetβπΎ) |
cdlemg2.a | β’ π΄ = (AtomsβπΎ) |
cdlemg2.h | β’ π» = (LHypβπΎ) |
cdlemg2.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemg2.u | β’ π = ((π β¨ π) β§ π) |
cdlemg2.d | β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
cdlemg2.e | β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
cdlemg2.g | β’ πΊ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
Ref | Expression |
---|---|
cdlemg2dN | β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β πΉ = πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1198 | . 2 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β πΉ β π) | |
2 | simp1 1133 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β (πΎ β HL β§ π β π»)) | |
3 | simp2l 1196 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β (π β π΄ β§ Β¬ π β€ π)) | |
4 | simp2r 1197 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β (π β π΄ β§ Β¬ π β€ π)) | |
5 | simp3r 1199 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β (πΉβπ) = π) | |
6 | cdlemg2.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
7 | cdlemg2.l | . . . 4 β’ β€ = (leβπΎ) | |
8 | cdlemg2.j | . . . 4 β’ β¨ = (joinβπΎ) | |
9 | cdlemg2.m | . . . 4 β’ β§ = (meetβπΎ) | |
10 | cdlemg2.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
11 | cdlemg2.h | . . . 4 β’ π» = (LHypβπΎ) | |
12 | cdlemg2.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
13 | cdlemg2.u | . . . 4 β’ π = ((π β¨ π) β§ π) | |
14 | cdlemg2.d | . . . 4 β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) | |
15 | cdlemg2.e | . . . 4 β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) | |
16 | cdlemg2.g | . . . 4 β’ πΊ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) | |
17 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | cdlemg2cN 39916 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉβπ) = π) β (πΉ β π β πΉ = πΊ)) |
18 | 2, 3, 4, 5, 17 | syl31anc 1370 | . 2 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β (πΉ β π β πΉ = πΊ)) |
19 | 1, 18 | mpbid 231 | 1 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ (πΉβπ) = π)) β πΉ = πΊ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βwral 3053 β¦csb 3885 ifcif 4520 class class class wbr 5138 β¦ cmpt 5221 βcfv 6533 β©crio 7356 (class class class)co 7401 Basecbs 17142 lecple 17202 joincjn 18265 meetcmee 18266 Atomscatm 38589 HLchlt 38676 LHypclh 39311 LTrncltrn 39428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-undef 8253 df-map 8817 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-p1 18380 df-lat 18386 df-clat 18453 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 |
This theorem is referenced by: cdlemg2idN 39923 |
Copyright terms: Public domain | W3C validator |