| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11b | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
| cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn11a.d | ⊢ + = (+g‘𝑈) |
| cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
| cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
| Ref | Expression |
|---|---|
| cdlemn11b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1139 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | |
| 2 | cdlemn11a.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemn11a.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemn11a.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemn11a.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemn11a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemn11a.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 8 | cdlemn11a.o | . . 3 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 9 | cdlemn11a.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | cdlemn11a.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | cdlemn11a.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 12 | cdlemn11a.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 13 | cdlemn11a.J | . . 3 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
| 14 | cdlemn11a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 15 | cdlemn11a.d | . . 3 ⊢ + = (+g‘𝑈) | |
| 16 | cdlemn11a.s | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
| 17 | cdlemn11a.f | . . 3 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
| 18 | cdlemn11a.g | . . 3 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
| 19 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemn11a 41187 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
| 20 | 1, 19 | sseldd 3983 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⊆ wss 3950 〈cop 4630 class class class wbr 5141 ↦ cmpt 5223 I cid 5575 ↾ cres 5685 ‘cfv 6559 ℩crio 7385 (class class class)co 7429 Basecbs 17243 +gcplusg 17293 lecple 17300 occoc 17301 joincjn 18353 LSSumclsm 19648 Atomscatm 39242 HLchlt 39329 LHypclh 39964 LTrncltrn 40081 trLctrl 40138 TEndoctendo 40732 DVecHcdvh 41058 DIsoBcdib 41118 DIsoCcdic 41152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-riotaBAD 38932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-undef 8294 df-map 8864 df-proset 18336 df-poset 18355 df-plt 18371 df-lub 18387 df-glb 18388 df-join 18389 df-meet 18390 df-p0 18466 df-p1 18467 df-lat 18473 df-clat 18540 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39478 df-lplanes 39479 df-lvols 39480 df-lines 39481 df-psubsp 39483 df-pmap 39484 df-padd 39776 df-lhyp 39968 df-laut 39969 df-ldil 40084 df-ltrn 40085 df-trl 40139 df-tendo 40735 df-dic 41153 |
| This theorem is referenced by: cdlemn11c 41189 |
| Copyright terms: Public domain | W3C validator |