![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11b | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
cdlemn11a.d | ⊢ + = (+g‘𝑈) |
cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
Ref | Expression |
---|---|
cdlemn11b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | |
2 | cdlemn11a.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdlemn11a.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | cdlemn11a.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | cdlemn11a.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemn11a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemn11a.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
8 | cdlemn11a.o | . . 3 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
9 | cdlemn11a.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemn11a.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | cdlemn11a.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
12 | cdlemn11a.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
13 | cdlemn11a.J | . . 3 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
14 | cdlemn11a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
15 | cdlemn11a.d | . . 3 ⊢ + = (+g‘𝑈) | |
16 | cdlemn11a.s | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
17 | cdlemn11a.f | . . 3 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
18 | cdlemn11a.g | . . 3 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
19 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemn11a 41157 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
20 | 1, 19 | sseldd 4009 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 ↾ cres 5697 ‘cfv 6568 ℩crio 7398 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 lecple 17312 occoc 17313 joincjn 18375 LSSumclsm 19670 Atomscatm 39212 HLchlt 39299 LHypclh 39934 LTrncltrn 40051 trLctrl 40108 TEndoctendo 40702 DVecHcdvh 41028 DIsoBcdib 41088 DIsoCcdic 41122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-riotaBAD 38902 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-1st 8024 df-2nd 8025 df-undef 8308 df-map 8880 df-proset 18359 df-poset 18377 df-plt 18394 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-p0 18489 df-p1 18490 df-lat 18496 df-clat 18563 df-oposet 39125 df-ol 39127 df-oml 39128 df-covers 39215 df-ats 39216 df-atl 39247 df-cvlat 39271 df-hlat 39300 df-llines 39448 df-lplanes 39449 df-lvols 39450 df-lines 39451 df-psubsp 39453 df-pmap 39454 df-padd 39746 df-lhyp 39938 df-laut 39939 df-ldil 40054 df-ltrn 40055 df-trl 40109 df-tendo 40705 df-dic 41123 |
This theorem is referenced by: cdlemn11c 41159 |
Copyright terms: Public domain | W3C validator |