| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11b | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
| cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn11a.d | ⊢ + = (+g‘𝑈) |
| cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
| cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
| Ref | Expression |
|---|---|
| cdlemn11b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | |
| 2 | cdlemn11a.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemn11a.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemn11a.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemn11a.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemn11a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemn11a.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 8 | cdlemn11a.o | . . 3 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 9 | cdlemn11a.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | cdlemn11a.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | cdlemn11a.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 12 | cdlemn11a.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 13 | cdlemn11a.J | . . 3 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
| 14 | cdlemn11a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 15 | cdlemn11a.d | . . 3 ⊢ + = (+g‘𝑈) | |
| 16 | cdlemn11a.s | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
| 17 | cdlemn11a.f | . . 3 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
| 18 | cdlemn11a.g | . . 3 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
| 19 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemn11a 41196 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
| 20 | 1, 19 | sseldd 3949 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 〈cop 4597 class class class wbr 5109 ↦ cmpt 5190 I cid 5534 ↾ cres 5642 ‘cfv 6513 ℩crio 7345 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 lecple 17233 occoc 17234 joincjn 18278 LSSumclsm 19570 Atomscatm 39251 HLchlt 39338 LHypclh 39973 LTrncltrn 40090 trLctrl 40147 TEndoctendo 40741 DVecHcdvh 41067 DIsoBcdib 41127 DIsoCcdic 41161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-undef 8254 df-map 8803 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 df-dic 41162 |
| This theorem is referenced by: cdlemn11c 41198 |
| Copyright terms: Public domain | W3C validator |