![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11b | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn11a.b | β’ π΅ = (BaseβπΎ) |
cdlemn11a.l | β’ β€ = (leβπΎ) |
cdlemn11a.j | β’ β¨ = (joinβπΎ) |
cdlemn11a.a | β’ π΄ = (AtomsβπΎ) |
cdlemn11a.h | β’ π» = (LHypβπΎ) |
cdlemn11a.p | β’ π = ((ocβπΎ)βπ) |
cdlemn11a.o | β’ π = (β β π β¦ ( I βΎ π΅)) |
cdlemn11a.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemn11a.r | β’ π = ((trLβπΎ)βπ) |
cdlemn11a.e | β’ πΈ = ((TEndoβπΎ)βπ) |
cdlemn11a.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
cdlemn11a.J | β’ π½ = ((DIsoCβπΎ)βπ) |
cdlemn11a.u | β’ π = ((DVecHβπΎ)βπ) |
cdlemn11a.d | β’ + = (+gβπ) |
cdlemn11a.s | β’ β = (LSSumβπ) |
cdlemn11a.f | β’ πΉ = (β©β β π (ββπ) = π) |
cdlemn11a.g | β’ πΊ = (β©β β π (ββπ) = π) |
Ref | Expression |
---|---|
cdlemn11b | β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β β¨πΊ, ( I βΎ π)β© β ((π½βπ) β (πΌβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β (π½βπ) β ((π½βπ) β (πΌβπ))) | |
2 | cdlemn11a.b | . . 3 β’ π΅ = (BaseβπΎ) | |
3 | cdlemn11a.l | . . 3 β’ β€ = (leβπΎ) | |
4 | cdlemn11a.j | . . 3 β’ β¨ = (joinβπΎ) | |
5 | cdlemn11a.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemn11a.h | . . 3 β’ π» = (LHypβπΎ) | |
7 | cdlemn11a.p | . . 3 β’ π = ((ocβπΎ)βπ) | |
8 | cdlemn11a.o | . . 3 β’ π = (β β π β¦ ( I βΎ π΅)) | |
9 | cdlemn11a.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
10 | cdlemn11a.r | . . 3 β’ π = ((trLβπΎ)βπ) | |
11 | cdlemn11a.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
12 | cdlemn11a.i | . . 3 β’ πΌ = ((DIsoBβπΎ)βπ) | |
13 | cdlemn11a.J | . . 3 β’ π½ = ((DIsoCβπΎ)βπ) | |
14 | cdlemn11a.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
15 | cdlemn11a.d | . . 3 β’ + = (+gβπ) | |
16 | cdlemn11a.s | . . 3 β’ β = (LSSumβπ) | |
17 | cdlemn11a.f | . . 3 β’ πΉ = (β©β β π (ββπ) = π) | |
18 | cdlemn11a.g | . . 3 β’ πΊ = (β©β β π (ββπ) = π) | |
19 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemn11a 40534 | . 2 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β β¨πΊ, ( I βΎ π)β© β (π½βπ)) |
20 | 1, 19 | sseldd 3975 | 1 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (π½βπ) β ((π½βπ) β (πΌβπ))) β β¨πΊ, ( I βΎ π)β© β ((π½βπ) β (πΌβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3940 β¨cop 4626 class class class wbr 5138 β¦ cmpt 5221 I cid 5563 βΎ cres 5668 βcfv 6533 β©crio 7356 (class class class)co 7401 Basecbs 17142 +gcplusg 17195 lecple 17202 occoc 17203 joincjn 18265 LSSumclsm 19543 Atomscatm 38589 HLchlt 38676 LHypclh 39311 LTrncltrn 39428 trLctrl 39485 TEndoctendo 40079 DVecHcdvh 40405 DIsoBcdib 40465 DIsoCcdic 40499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-undef 8253 df-map 8817 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-p1 18380 df-lat 18386 df-clat 18453 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tendo 40082 df-dic 40500 |
This theorem is referenced by: cdlemn11c 40536 |
Copyright terms: Public domain | W3C validator |