| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11b | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
| cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn11a.d | ⊢ + = (+g‘𝑈) |
| cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
| cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
| Ref | Expression |
|---|---|
| cdlemn11b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | |
| 2 | cdlemn11a.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemn11a.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemn11a.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemn11a.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemn11a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemn11a.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 8 | cdlemn11a.o | . . 3 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 9 | cdlemn11a.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | cdlemn11a.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | cdlemn11a.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 12 | cdlemn11a.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 13 | cdlemn11a.J | . . 3 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
| 14 | cdlemn11a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 15 | cdlemn11a.d | . . 3 ⊢ + = (+g‘𝑈) | |
| 16 | cdlemn11a.s | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
| 17 | cdlemn11a.f | . . 3 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
| 18 | cdlemn11a.g | . . 3 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
| 19 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemn11a 41184 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
| 20 | 1, 19 | sseldd 3964 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 〈cop 4612 class class class wbr 5123 ↦ cmpt 5205 I cid 5557 ↾ cres 5667 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 lecple 17281 occoc 17282 joincjn 18328 LSSumclsm 19621 Atomscatm 39239 HLchlt 39326 LHypclh 39961 LTrncltrn 40078 trLctrl 40135 TEndoctendo 40729 DVecHcdvh 41055 DIsoBcdib 41115 DIsoCcdic 41149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-riotaBAD 38929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-undef 8280 df-map 8850 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39152 df-ol 39154 df-oml 39155 df-covers 39242 df-ats 39243 df-atl 39274 df-cvlat 39298 df-hlat 39327 df-llines 39475 df-lplanes 39476 df-lvols 39477 df-lines 39478 df-psubsp 39480 df-pmap 39481 df-padd 39773 df-lhyp 39965 df-laut 39966 df-ldil 40081 df-ltrn 40082 df-trl 40136 df-tendo 40732 df-dic 41150 |
| This theorem is referenced by: cdlemn11c 41186 |
| Copyright terms: Public domain | W3C validator |