| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limclr | Structured version Visualization version GIF version | ||
| Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| limclr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| limclr.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limclr.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| limclr.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| limclr.lp1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
| limclr.lp2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
| limclr.l | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| limclr.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| Ref | Expression |
|---|---|
| limclr | ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne 2936 | . . . . . 6 ⊢ (¬ 𝐿 = 𝑅 → 𝐿 ≠ 𝑅) | |
| 2 | limclr.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 3 | limclr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐴 ⊆ ℝ) |
| 5 | limclr.j | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 6 | limclr.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐹:𝐴⟶ℂ) |
| 8 | limclr.lp1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
| 10 | limclr.lp2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
| 12 | limclr.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| 14 | limclr.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
| 15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐿 ≠ 𝑅) | |
| 17 | 2, 4, 5, 7, 9, 11, 13, 15, 16 | limclner 45688 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → (𝐹 limℂ 𝐵) = ∅) |
| 18 | nne 2932 | . . . . . . 7 ⊢ (¬ (𝐹 limℂ 𝐵) ≠ ∅ ↔ (𝐹 limℂ 𝐵) = ∅) | |
| 19 | 17, 18 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → ¬ (𝐹 limℂ 𝐵) ≠ ∅) |
| 20 | 1, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐿 = 𝑅) → ¬ (𝐹 limℂ 𝐵) ≠ ∅) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (¬ 𝐿 = 𝑅 → ¬ (𝐹 limℂ 𝐵) ≠ ∅)) |
| 22 | 21 | con4d 115 | . . 3 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) ≠ ∅ → 𝐿 = 𝑅)) |
| 23 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐴 ⊆ ℝ) |
| 24 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐹:𝐴⟶ℂ) |
| 25 | retop 24674 | . . . . . . . . . 10 ⊢ (topGen‘ran (,)) ∈ Top | |
| 26 | 5, 25 | eqeltri 2827 | . . . . . . . . 9 ⊢ 𝐽 ∈ Top |
| 27 | inss2 4188 | . . . . . . . . . 10 ⊢ (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵) | |
| 28 | ioossre 13304 | . . . . . . . . . 10 ⊢ (-∞(,)𝐵) ⊆ ℝ | |
| 29 | 27, 28 | sstri 3944 | . . . . . . . . 9 ⊢ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ |
| 30 | uniretop 24675 | . . . . . . . . . . 11 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 31 | 5 | eqcomi 2740 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) = 𝐽 |
| 32 | 31 | unieqi 4871 | . . . . . . . . . . 11 ⊢ ∪ (topGen‘ran (,)) = ∪ 𝐽 |
| 33 | 30, 32 | eqtri 2754 | . . . . . . . . . 10 ⊢ ℝ = ∪ 𝐽 |
| 34 | 33 | lpss 23055 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ) |
| 35 | 26, 29, 34 | mp2an 692 | . . . . . . . 8 ⊢ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ |
| 36 | 35, 8 | sselid 3932 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐵 ∈ ℝ) |
| 38 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| 39 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| 40 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 = 𝑅) | |
| 41 | 2, 23, 5, 24, 37, 38, 39, 40 | limcleqr 45681 | . . . . 5 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
| 42 | 41 | ne0d 4292 | . . . 4 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → (𝐹 limℂ 𝐵) ≠ ∅) |
| 43 | 42 | ex 412 | . . 3 ⊢ (𝜑 → (𝐿 = 𝑅 → (𝐹 limℂ 𝐵) ≠ ∅)) |
| 44 | 22, 43 | impbid 212 | . 2 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅)) |
| 45 | 41 | ex 412 | . 2 ⊢ (𝜑 → (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵))) |
| 46 | 44, 45 | jca 511 | 1 ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 ∪ cuni 4859 ran crn 5617 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 +∞cpnf 11140 -∞cmnf 11141 (,)cioo 13242 TopOpenctopn 17322 topGenctg 17338 ℂfldccnfld 21289 Topctop 22806 limPtclp 23047 limℂ climc 25788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-rest 17323 df-topn 17324 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-cnp 23141 df-xms 24233 df-ms 24234 df-limc 25792 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |