Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclr Structured version   Visualization version   GIF version

Theorem limclr 41820
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclr.k 𝐾 = (TopOpen‘ℂfld)
limclr.a (𝜑𝐴 ⊆ ℝ)
limclr.j 𝐽 = (topGen‘ran (,))
limclr.f (𝜑𝐹:𝐴⟶ℂ)
limclr.lp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclr.lp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
Assertion
Ref Expression
limclr (𝜑 → (((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵))))

Proof of Theorem limclr
StepHypRef Expression
1 neqne 3029 . . . . . 6 𝐿 = 𝑅𝐿𝑅)
2 limclr.k . . . . . . . 8 𝐾 = (TopOpen‘ℂfld)
3 limclr.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
43adantr 481 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐴 ⊆ ℝ)
5 limclr.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
6 limclr.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
76adantr 481 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐹:𝐴⟶ℂ)
8 limclr.lp1 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
98adantr 481 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
10 limclr.lp2 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
1110adantr 481 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
12 limclr.l . . . . . . . . 9 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
1312adantr 481 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
14 limclr.r . . . . . . . . 9 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
1514adantr 481 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
16 simpr 485 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐿𝑅)
172, 4, 5, 7, 9, 11, 13, 15, 16limclner 41816 . . . . . . 7 ((𝜑𝐿𝑅) → (𝐹 lim 𝐵) = ∅)
18 nne 3025 . . . . . . 7 (¬ (𝐹 lim 𝐵) ≠ ∅ ↔ (𝐹 lim 𝐵) = ∅)
1917, 18sylibr 235 . . . . . 6 ((𝜑𝐿𝑅) → ¬ (𝐹 lim 𝐵) ≠ ∅)
201, 19sylan2 592 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 𝑅) → ¬ (𝐹 lim 𝐵) ≠ ∅)
2120ex 413 . . . 4 (𝜑 → (¬ 𝐿 = 𝑅 → ¬ (𝐹 lim 𝐵) ≠ ∅))
2221con4d 115 . . 3 (𝜑 → ((𝐹 lim 𝐵) ≠ ∅ → 𝐿 = 𝑅))
233adantr 481 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐴 ⊆ ℝ)
246adantr 481 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐹:𝐴⟶ℂ)
25 retop 23304 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
265, 25eqeltri 2914 . . . . . . . . 9 𝐽 ∈ Top
27 inss2 4210 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
28 ioossre 12793 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
2927, 28sstri 3980 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
30 uniretop 23305 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
315eqcomi 2835 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
3231unieqi 4846 . . . . . . . . . . 11 (topGen‘ran (,)) = 𝐽
3330, 32eqtri 2849 . . . . . . . . . 10 ℝ = 𝐽
3433lpss 21685 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
3526, 29, 34mp2an 688 . . . . . . . 8 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
3635, 8sseldi 3969 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
3736adantr 481 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐵 ∈ ℝ)
3812adantr 481 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
3914adantr 481 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
40 simpr 485 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐿 = 𝑅)
412, 23, 5, 24, 37, 38, 39, 40limcleqr 41809 . . . . 5 ((𝜑𝐿 = 𝑅) → 𝐿 ∈ (𝐹 lim 𝐵))
4241ne0d 4305 . . . 4 ((𝜑𝐿 = 𝑅) → (𝐹 lim 𝐵) ≠ ∅)
4342ex 413 . . 3 (𝜑 → (𝐿 = 𝑅 → (𝐹 lim 𝐵) ≠ ∅))
4422, 43impbid 213 . 2 (𝜑 → ((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅))
4541ex 413 . 2 (𝜑 → (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵)))
4644, 45jca 512 1 (𝜑 → (((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  cin 3939  wss 3940  c0 4295   cuni 4837  ran crn 5555  cres 5556  wf 6350  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  +∞cpnf 10666  -∞cmnf 10667  (,)cioo 12733  TopOpenctopn 16690  topGenctg 16706  fldccnfld 20480  Topctop 21436  limPtclp 21677   lim climc 24394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-fz 12888  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-mulr 16574  df-starv 16575  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-rest 16691  df-topn 16692  df-topgen 16712  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-cnp 21771  df-xms 22864  df-ms 22865  df-limc 24398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator