Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclr Structured version   Visualization version   GIF version

Theorem limclr 45610
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclr.k 𝐾 = (TopOpen‘ℂfld)
limclr.a (𝜑𝐴 ⊆ ℝ)
limclr.j 𝐽 = (topGen‘ran (,))
limclr.f (𝜑𝐹:𝐴⟶ℂ)
limclr.lp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclr.lp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
Assertion
Ref Expression
limclr (𝜑 → (((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵))))

Proof of Theorem limclr
StepHypRef Expression
1 neqne 2945 . . . . . 6 𝐿 = 𝑅𝐿𝑅)
2 limclr.k . . . . . . . 8 𝐾 = (TopOpen‘ℂfld)
3 limclr.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
43adantr 480 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐴 ⊆ ℝ)
5 limclr.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
6 limclr.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
76adantr 480 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐹:𝐴⟶ℂ)
8 limclr.lp1 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
98adantr 480 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
10 limclr.lp2 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
1110adantr 480 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
12 limclr.l . . . . . . . . 9 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
1312adantr 480 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
14 limclr.r . . . . . . . . 9 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
1514adantr 480 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
16 simpr 484 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐿𝑅)
172, 4, 5, 7, 9, 11, 13, 15, 16limclner 45606 . . . . . . 7 ((𝜑𝐿𝑅) → (𝐹 lim 𝐵) = ∅)
18 nne 2941 . . . . . . 7 (¬ (𝐹 lim 𝐵) ≠ ∅ ↔ (𝐹 lim 𝐵) = ∅)
1917, 18sylibr 234 . . . . . 6 ((𝜑𝐿𝑅) → ¬ (𝐹 lim 𝐵) ≠ ∅)
201, 19sylan2 593 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 𝑅) → ¬ (𝐹 lim 𝐵) ≠ ∅)
2120ex 412 . . . 4 (𝜑 → (¬ 𝐿 = 𝑅 → ¬ (𝐹 lim 𝐵) ≠ ∅))
2221con4d 115 . . 3 (𝜑 → ((𝐹 lim 𝐵) ≠ ∅ → 𝐿 = 𝑅))
233adantr 480 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐴 ⊆ ℝ)
246adantr 480 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐹:𝐴⟶ℂ)
25 retop 24797 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
265, 25eqeltri 2834 . . . . . . . . 9 𝐽 ∈ Top
27 inss2 4245 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
28 ioossre 13444 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
2927, 28sstri 4004 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
30 uniretop 24798 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
315eqcomi 2743 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
3231unieqi 4923 . . . . . . . . . . 11 (topGen‘ran (,)) = 𝐽
3330, 32eqtri 2762 . . . . . . . . . 10 ℝ = 𝐽
3433lpss 23165 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
3526, 29, 34mp2an 692 . . . . . . . 8 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
3635, 8sselid 3992 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
3736adantr 480 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐵 ∈ ℝ)
3812adantr 480 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
3914adantr 480 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
40 simpr 484 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐿 = 𝑅)
412, 23, 5, 24, 37, 38, 39, 40limcleqr 45599 . . . . 5 ((𝜑𝐿 = 𝑅) → 𝐿 ∈ (𝐹 lim 𝐵))
4241ne0d 4347 . . . 4 ((𝜑𝐿 = 𝑅) → (𝐹 lim 𝐵) ≠ ∅)
4342ex 412 . . 3 (𝜑 → (𝐿 = 𝑅 → (𝐹 lim 𝐵) ≠ ∅))
4422, 43impbid 212 . 2 (𝜑 → ((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅))
4541ex 412 . 2 (𝜑 → (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵)))
4644, 45jca 511 1 (𝜑 → (((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  cin 3961  wss 3962  c0 4338   cuni 4911  ran crn 5689  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  +∞cpnf 11289  -∞cmnf 11290  (,)cioo 13383  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  Topctop 22914  limPtclp 23157   lim climc 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-cnp 23251  df-xms 24345  df-ms 24346  df-limc 25915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator