| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limclr | Structured version Visualization version GIF version | ||
| Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| limclr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| limclr.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limclr.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| limclr.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| limclr.lp1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
| limclr.lp2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
| limclr.l | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| limclr.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| Ref | Expression |
|---|---|
| limclr | ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne 2940 | . . . . . 6 ⊢ (¬ 𝐿 = 𝑅 → 𝐿 ≠ 𝑅) | |
| 2 | limclr.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 3 | limclr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐴 ⊆ ℝ) |
| 5 | limclr.j | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 6 | limclr.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐹:𝐴⟶ℂ) |
| 8 | limclr.lp1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
| 10 | limclr.lp2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
| 12 | limclr.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| 14 | limclr.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
| 15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐿 ≠ 𝑅) | |
| 17 | 2, 4, 5, 7, 9, 11, 13, 15, 16 | limclner 45628 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → (𝐹 limℂ 𝐵) = ∅) |
| 18 | nne 2936 | . . . . . . 7 ⊢ (¬ (𝐹 limℂ 𝐵) ≠ ∅ ↔ (𝐹 limℂ 𝐵) = ∅) | |
| 19 | 17, 18 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → ¬ (𝐹 limℂ 𝐵) ≠ ∅) |
| 20 | 1, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐿 = 𝑅) → ¬ (𝐹 limℂ 𝐵) ≠ ∅) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (¬ 𝐿 = 𝑅 → ¬ (𝐹 limℂ 𝐵) ≠ ∅)) |
| 22 | 21 | con4d 115 | . . 3 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) ≠ ∅ → 𝐿 = 𝑅)) |
| 23 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐴 ⊆ ℝ) |
| 24 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐹:𝐴⟶ℂ) |
| 25 | retop 24698 | . . . . . . . . . 10 ⊢ (topGen‘ran (,)) ∈ Top | |
| 26 | 5, 25 | eqeltri 2830 | . . . . . . . . 9 ⊢ 𝐽 ∈ Top |
| 27 | inss2 4213 | . . . . . . . . . 10 ⊢ (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵) | |
| 28 | ioossre 13422 | . . . . . . . . . 10 ⊢ (-∞(,)𝐵) ⊆ ℝ | |
| 29 | 27, 28 | sstri 3968 | . . . . . . . . 9 ⊢ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ |
| 30 | uniretop 24699 | . . . . . . . . . . 11 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 31 | 5 | eqcomi 2744 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) = 𝐽 |
| 32 | 31 | unieqi 4895 | . . . . . . . . . . 11 ⊢ ∪ (topGen‘ran (,)) = ∪ 𝐽 |
| 33 | 30, 32 | eqtri 2758 | . . . . . . . . . 10 ⊢ ℝ = ∪ 𝐽 |
| 34 | 33 | lpss 23078 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ) |
| 35 | 26, 29, 34 | mp2an 692 | . . . . . . . 8 ⊢ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ |
| 36 | 35, 8 | sselid 3956 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐵 ∈ ℝ) |
| 38 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| 39 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| 40 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 = 𝑅) | |
| 41 | 2, 23, 5, 24, 37, 38, 39, 40 | limcleqr 45621 | . . . . 5 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
| 42 | 41 | ne0d 4317 | . . . 4 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → (𝐹 limℂ 𝐵) ≠ ∅) |
| 43 | 42 | ex 412 | . . 3 ⊢ (𝜑 → (𝐿 = 𝑅 → (𝐹 limℂ 𝐵) ≠ ∅)) |
| 44 | 22, 43 | impbid 212 | . 2 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅)) |
| 45 | 41 | ex 412 | . 2 ⊢ (𝜑 → (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵))) |
| 46 | 44, 45 | jca 511 | 1 ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ran crn 5655 ↾ cres 5656 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 +∞cpnf 11264 -∞cmnf 11265 (,)cioo 13360 TopOpenctopn 17433 topGenctg 17449 ℂfldccnfld 21313 Topctop 22829 limPtclp 23070 limℂ climc 25813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9421 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-rest 17434 df-topn 17435 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-cnp 23164 df-xms 24257 df-ms 24258 df-limc 25817 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |