Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclr Structured version   Visualization version   GIF version

Theorem limclr 42021
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclr.k 𝐾 = (TopOpen‘ℂfld)
limclr.a (𝜑𝐴 ⊆ ℝ)
limclr.j 𝐽 = (topGen‘ran (,))
limclr.f (𝜑𝐹:𝐴⟶ℂ)
limclr.lp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclr.lp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
Assertion
Ref Expression
limclr (𝜑 → (((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵))))

Proof of Theorem limclr
StepHypRef Expression
1 neqne 3019 . . . . . 6 𝐿 = 𝑅𝐿𝑅)
2 limclr.k . . . . . . . 8 𝐾 = (TopOpen‘ℂfld)
3 limclr.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
43adantr 483 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐴 ⊆ ℝ)
5 limclr.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
6 limclr.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
76adantr 483 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐹:𝐴⟶ℂ)
8 limclr.lp1 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
98adantr 483 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
10 limclr.lp2 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
1110adantr 483 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
12 limclr.l . . . . . . . . 9 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
1312adantr 483 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
14 limclr.r . . . . . . . . 9 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
1514adantr 483 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
16 simpr 487 . . . . . . . 8 ((𝜑𝐿𝑅) → 𝐿𝑅)
172, 4, 5, 7, 9, 11, 13, 15, 16limclner 42017 . . . . . . 7 ((𝜑𝐿𝑅) → (𝐹 lim 𝐵) = ∅)
18 nne 3015 . . . . . . 7 (¬ (𝐹 lim 𝐵) ≠ ∅ ↔ (𝐹 lim 𝐵) = ∅)
1917, 18sylibr 236 . . . . . 6 ((𝜑𝐿𝑅) → ¬ (𝐹 lim 𝐵) ≠ ∅)
201, 19sylan2 594 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 𝑅) → ¬ (𝐹 lim 𝐵) ≠ ∅)
2120ex 415 . . . 4 (𝜑 → (¬ 𝐿 = 𝑅 → ¬ (𝐹 lim 𝐵) ≠ ∅))
2221con4d 115 . . 3 (𝜑 → ((𝐹 lim 𝐵) ≠ ∅ → 𝐿 = 𝑅))
233adantr 483 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐴 ⊆ ℝ)
246adantr 483 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐹:𝐴⟶ℂ)
25 retop 23348 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
265, 25eqeltri 2907 . . . . . . . . 9 𝐽 ∈ Top
27 inss2 4189 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
28 ioossre 12780 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
2927, 28sstri 3959 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
30 uniretop 23349 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
315eqcomi 2829 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
3231unieqi 4832 . . . . . . . . . . 11 (topGen‘ran (,)) = 𝐽
3330, 32eqtri 2843 . . . . . . . . . 10 ℝ = 𝐽
3433lpss 21728 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
3526, 29, 34mp2an 690 . . . . . . . 8 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
3635, 8sseldi 3948 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
3736adantr 483 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐵 ∈ ℝ)
3812adantr 483 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
3914adantr 483 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
40 simpr 487 . . . . . 6 ((𝜑𝐿 = 𝑅) → 𝐿 = 𝑅)
412, 23, 5, 24, 37, 38, 39, 40limcleqr 42010 . . . . 5 ((𝜑𝐿 = 𝑅) → 𝐿 ∈ (𝐹 lim 𝐵))
4241ne0d 4282 . . . 4 ((𝜑𝐿 = 𝑅) → (𝐹 lim 𝐵) ≠ ∅)
4342ex 415 . . 3 (𝜑 → (𝐿 = 𝑅 → (𝐹 lim 𝐵) ≠ ∅))
4422, 43impbid 214 . 2 (𝜑 → ((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅))
4541ex 415 . 2 (𝜑 → (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵)))
4644, 45jca 514 1 (𝜑 → (((𝐹 lim 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅𝐿 ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3011  cin 3918  wss 3919  c0 4274   cuni 4819  ran crn 5537  cres 5538  wf 6332  cfv 6336  (class class class)co 7137  cc 10516  cr 10517  +∞cpnf 10653  -∞cmnf 10654  (,)cioo 12720  TopOpenctopn 16673  topGenctg 16689  fldccnfld 20523  Topctop 21479  limPtclp 21720   lim climc 24440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595  ax-pre-sup 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-oadd 8087  df-er 8270  df-map 8389  df-pm 8390  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-fi 8856  df-sup 8887  df-inf 8888  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-div 11279  df-nn 11620  df-2 11682  df-3 11683  df-4 11684  df-5 11685  df-6 11686  df-7 11687  df-8 11688  df-9 11689  df-n0 11880  df-z 11964  df-dec 12081  df-uz 12226  df-q 12331  df-rp 12372  df-xneg 12489  df-xadd 12490  df-xmul 12491  df-ioo 12724  df-fz 12878  df-seq 13355  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-plusg 16556  df-mulr 16557  df-starv 16558  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-rest 16674  df-topn 16675  df-topgen 16695  df-psmet 20515  df-xmet 20516  df-met 20517  df-bl 20518  df-mopn 20519  df-cnfld 20524  df-top 21480  df-topon 21497  df-topsp 21519  df-bases 21532  df-cld 21605  df-ntr 21606  df-cls 21607  df-nei 21684  df-lp 21722  df-cnp 21814  df-xms 22908  df-ms 22909  df-limc 24444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator