![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limclr | Structured version Visualization version GIF version |
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
limclr.k | β’ πΎ = (TopOpenββfld) |
limclr.a | β’ (π β π΄ β β) |
limclr.j | β’ π½ = (topGenβran (,)) |
limclr.f | β’ (π β πΉ:π΄βΆβ) |
limclr.lp1 | β’ (π β π΅ β ((limPtβπ½)β(π΄ β© (-β(,)π΅)))) |
limclr.lp2 | β’ (π β π΅ β ((limPtβπ½)β(π΄ β© (π΅(,)+β)))) |
limclr.l | β’ (π β πΏ β ((πΉ βΎ (-β(,)π΅)) limβ π΅)) |
limclr.r | β’ (π β π β ((πΉ βΎ (π΅(,)+β)) limβ π΅)) |
Ref | Expression |
---|---|
limclr | β’ (π β (((πΉ limβ π΅) β β β πΏ = π ) β§ (πΏ = π β πΏ β (πΉ limβ π΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqne 2946 | . . . . . 6 β’ (Β¬ πΏ = π β πΏ β π ) | |
2 | limclr.k | . . . . . . . 8 β’ πΎ = (TopOpenββfld) | |
3 | limclr.a | . . . . . . . . 9 β’ (π β π΄ β β) | |
4 | 3 | adantr 479 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β π΄ β β) |
5 | limclr.j | . . . . . . . 8 β’ π½ = (topGenβran (,)) | |
6 | limclr.f | . . . . . . . . 9 β’ (π β πΉ:π΄βΆβ) | |
7 | 6 | adantr 479 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β πΉ:π΄βΆβ) |
8 | limclr.lp1 | . . . . . . . . 9 β’ (π β π΅ β ((limPtβπ½)β(π΄ β© (-β(,)π΅)))) | |
9 | 8 | adantr 479 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β π΅ β ((limPtβπ½)β(π΄ β© (-β(,)π΅)))) |
10 | limclr.lp2 | . . . . . . . . 9 β’ (π β π΅ β ((limPtβπ½)β(π΄ β© (π΅(,)+β)))) | |
11 | 10 | adantr 479 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β π΅ β ((limPtβπ½)β(π΄ β© (π΅(,)+β)))) |
12 | limclr.l | . . . . . . . . 9 β’ (π β πΏ β ((πΉ βΎ (-β(,)π΅)) limβ π΅)) | |
13 | 12 | adantr 479 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β πΏ β ((πΉ βΎ (-β(,)π΅)) limβ π΅)) |
14 | limclr.r | . . . . . . . . 9 β’ (π β π β ((πΉ βΎ (π΅(,)+β)) limβ π΅)) | |
15 | 14 | adantr 479 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β π β ((πΉ βΎ (π΅(,)+β)) limβ π΅)) |
16 | simpr 483 | . . . . . . . 8 β’ ((π β§ πΏ β π ) β πΏ β π ) | |
17 | 2, 4, 5, 7, 9, 11, 13, 15, 16 | limclner 44665 | . . . . . . 7 β’ ((π β§ πΏ β π ) β (πΉ limβ π΅) = β ) |
18 | nne 2942 | . . . . . . 7 β’ (Β¬ (πΉ limβ π΅) β β β (πΉ limβ π΅) = β ) | |
19 | 17, 18 | sylibr 233 | . . . . . 6 β’ ((π β§ πΏ β π ) β Β¬ (πΉ limβ π΅) β β ) |
20 | 1, 19 | sylan2 591 | . . . . 5 β’ ((π β§ Β¬ πΏ = π ) β Β¬ (πΉ limβ π΅) β β ) |
21 | 20 | ex 411 | . . . 4 β’ (π β (Β¬ πΏ = π β Β¬ (πΉ limβ π΅) β β )) |
22 | 21 | con4d 115 | . . 3 β’ (π β ((πΉ limβ π΅) β β β πΏ = π )) |
23 | 3 | adantr 479 | . . . . . 6 β’ ((π β§ πΏ = π ) β π΄ β β) |
24 | 6 | adantr 479 | . . . . . 6 β’ ((π β§ πΏ = π ) β πΉ:π΄βΆβ) |
25 | retop 24498 | . . . . . . . . . 10 β’ (topGenβran (,)) β Top | |
26 | 5, 25 | eqeltri 2827 | . . . . . . . . 9 β’ π½ β Top |
27 | inss2 4228 | . . . . . . . . . 10 β’ (π΄ β© (-β(,)π΅)) β (-β(,)π΅) | |
28 | ioossre 13389 | . . . . . . . . . 10 β’ (-β(,)π΅) β β | |
29 | 27, 28 | sstri 3990 | . . . . . . . . 9 β’ (π΄ β© (-β(,)π΅)) β β |
30 | uniretop 24499 | . . . . . . . . . . 11 β’ β = βͺ (topGenβran (,)) | |
31 | 5 | eqcomi 2739 | . . . . . . . . . . . 12 β’ (topGenβran (,)) = π½ |
32 | 31 | unieqi 4920 | . . . . . . . . . . 11 β’ βͺ (topGenβran (,)) = βͺ π½ |
33 | 30, 32 | eqtri 2758 | . . . . . . . . . 10 β’ β = βͺ π½ |
34 | 33 | lpss 22866 | . . . . . . . . 9 β’ ((π½ β Top β§ (π΄ β© (-β(,)π΅)) β β) β ((limPtβπ½)β(π΄ β© (-β(,)π΅))) β β) |
35 | 26, 29, 34 | mp2an 688 | . . . . . . . 8 β’ ((limPtβπ½)β(π΄ β© (-β(,)π΅))) β β |
36 | 35, 8 | sselid 3979 | . . . . . . 7 β’ (π β π΅ β β) |
37 | 36 | adantr 479 | . . . . . 6 β’ ((π β§ πΏ = π ) β π΅ β β) |
38 | 12 | adantr 479 | . . . . . 6 β’ ((π β§ πΏ = π ) β πΏ β ((πΉ βΎ (-β(,)π΅)) limβ π΅)) |
39 | 14 | adantr 479 | . . . . . 6 β’ ((π β§ πΏ = π ) β π β ((πΉ βΎ (π΅(,)+β)) limβ π΅)) |
40 | simpr 483 | . . . . . 6 β’ ((π β§ πΏ = π ) β πΏ = π ) | |
41 | 2, 23, 5, 24, 37, 38, 39, 40 | limcleqr 44658 | . . . . 5 β’ ((π β§ πΏ = π ) β πΏ β (πΉ limβ π΅)) |
42 | 41 | ne0d 4334 | . . . 4 β’ ((π β§ πΏ = π ) β (πΉ limβ π΅) β β ) |
43 | 42 | ex 411 | . . 3 β’ (π β (πΏ = π β (πΉ limβ π΅) β β )) |
44 | 22, 43 | impbid 211 | . 2 β’ (π β ((πΉ limβ π΅) β β β πΏ = π )) |
45 | 41 | ex 411 | . 2 β’ (π β (πΏ = π β πΏ β (πΉ limβ π΅))) |
46 | 44, 45 | jca 510 | 1 β’ (π β (((πΉ limβ π΅) β β β πΏ = π ) β§ (πΏ = π β πΏ β (πΉ limβ π΅)))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 β© cin 3946 β wss 3947 β c0 4321 βͺ cuni 4907 ran crn 5676 βΎ cres 5677 βΆwf 6538 βcfv 6542 (class class class)co 7411 βcc 11110 βcr 11111 +βcpnf 11249 -βcmnf 11250 (,)cioo 13328 TopOpenctopn 17371 topGenctg 17387 βfldccnfld 21144 Topctop 22615 limPtclp 22858 limβ climc 25611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-rest 17372 df-topn 17373 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-cnp 22952 df-xms 24046 df-ms 24047 df-limc 25615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |