MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumunsnfd Structured version   Visualization version   GIF version

Theorem gsumunsnfd 19836
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumunsnd.b 𝐵 = (Base‘𝐺)
gsumunsnd.p + = (+g𝐺)
gsumunsnd.g (𝜑𝐺 ∈ CMnd)
gsumunsnd.a (𝜑𝐴 ∈ Fin)
gsumunsnd.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumunsnd.m (𝜑𝑀𝑉)
gsumunsnd.d (𝜑 → ¬ 𝑀𝐴)
gsumunsnd.y (𝜑𝑌𝐵)
gsumunsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
gsumunsnfd.0 𝑘𝑌
Assertion
Ref Expression
gsumunsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumunsnfd
StepHypRef Expression
1 gsumunsnd.b . . 3 𝐵 = (Base‘𝐺)
2 gsumunsnd.p . . 3 + = (+g𝐺)
3 gsumunsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumunsnd.a . . . 4 (𝜑𝐴 ∈ Fin)
5 snfi 8968 . . . 4 {𝑀} ∈ Fin
6 unfi 9085 . . . 4 ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin)
74, 5, 6sylancl 586 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin)
8 elun 4104 . . . 4 (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘𝐴𝑘 ∈ {𝑀}))
9 gsumunsnd.f . . . . 5 ((𝜑𝑘𝐴) → 𝑋𝐵)
10 elsni 4594 . . . . . . 7 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
11 gsumunsnd.s . . . . . . 7 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
1210, 11sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑋 = 𝑌)
13 gsumunsnd.y . . . . . . 7 (𝜑𝑌𝐵)
1413adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑌𝐵)
1512, 14eqeltrd 2828 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝑋𝐵)
169, 15jaodan 959 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘 ∈ {𝑀})) → 𝑋𝐵)
178, 16sylan2b 594 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
18 gsumunsnd.d . . . 4 (𝜑 → ¬ 𝑀𝐴)
19 disjsn 4663 . . . 4 ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀𝐴)
2018, 19sylibr 234 . . 3 (𝜑 → (𝐴 ∩ {𝑀}) = ∅)
21 eqidd 2730 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀}))
221, 2, 3, 7, 17, 20, 21gsummptfidmsplit 19809 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
23 cmnmnd 19676 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
243, 23syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
25 gsumunsnd.m . . . 4 (𝜑𝑀𝑉)
26 nfv 1914 . . . 4 𝑘𝜑
27 gsumunsnfd.0 . . . 4 𝑘𝑌
281, 24, 25, 13, 11, 26, 27gsumsnfd 19830 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2928oveq2d 7365 . 2 (𝜑 → ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
3022, 29eqtrd 2764 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wnfc 2876  cun 3901  cin 3902  c0 4284  {csn 4577  cmpt 5173  cfv 6482  (class class class)co 7349  Fincfn 8872  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344  Mndcmnd 18608  CMndccmn 19659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661
This theorem is referenced by:  gsumunsnd  19837  gsumunsnf  19838
  Copyright terms: Public domain W3C validator