![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumunsnfd | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumunsnd.p | ⊢ + = (+g‘𝐺) |
gsumunsnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumunsnd.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
gsumunsnfd.0 | ⊢ Ⅎ𝑘𝑌 |
Ref | Expression |
---|---|
gsumunsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | snfi 9067 | . . . 4 ⊢ {𝑀} ∈ Fin | |
6 | unfi 9195 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
7 | 4, 5, 6 | sylancl 584 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
8 | elun 4141 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
9 | gsumunsnd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
10 | elsni 4641 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
11 | gsumunsnd.s | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
12 | 10, 11 | sylan2 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
13 | gsumunsnd.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | 13 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
15 | 12, 14 | eqeltrd 2825 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
16 | 9, 15 | jaodan 955 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
17 | 8, 16 | sylan2b 592 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
18 | gsumunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
19 | disjsn 4711 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
20 | 18, 19 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
21 | eqidd 2726 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
22 | 1, 2, 3, 7, 17, 20, 21 | gsummptfidmsplit 19889 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
23 | cmnmnd 19756 | . . . . 5 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
25 | gsumunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
26 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
27 | gsumunsnfd.0 | . . . 4 ⊢ Ⅎ𝑘𝑌 | |
28 | 1, 24, 25, 13, 11, 26, 27 | gsumsnfd 19910 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
29 | 28 | oveq2d 7432 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
30 | 22, 29 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 ∪ cun 3937 ∩ cin 3938 ∅c0 4318 {csn 4624 ↦ cmpt 5226 ‘cfv 6543 (class class class)co 7416 Fincfn 8962 Basecbs 17179 +gcplusg 17232 Σg cgsu 17421 Mndcmnd 18693 CMndccmn 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-0g 17422 df-gsum 17423 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19028 df-cntz 19272 df-cmn 19741 |
This theorem is referenced by: gsumunsnd 19917 gsumunsnf 19918 |
Copyright terms: Public domain | W3C validator |