MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumunsnfd Structured version   Visualization version   GIF version

Theorem gsumunsnfd 19071
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumunsnd.b 𝐵 = (Base‘𝐺)
gsumunsnd.p + = (+g𝐺)
gsumunsnd.g (𝜑𝐺 ∈ CMnd)
gsumunsnd.a (𝜑𝐴 ∈ Fin)
gsumunsnd.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumunsnd.m (𝜑𝑀𝑉)
gsumunsnd.d (𝜑 → ¬ 𝑀𝐴)
gsumunsnd.y (𝜑𝑌𝐵)
gsumunsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
gsumunsnfd.0 𝑘𝑌
Assertion
Ref Expression
gsumunsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumunsnfd
StepHypRef Expression
1 gsumunsnd.b . . 3 𝐵 = (Base‘𝐺)
2 gsumunsnd.p . . 3 + = (+g𝐺)
3 gsumunsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumunsnd.a . . . 4 (𝜑𝐴 ∈ Fin)
5 snfi 8588 . . . 4 {𝑀} ∈ Fin
6 unfi 8779 . . . 4 ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin)
74, 5, 6sylancl 588 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin)
8 elun 4125 . . . 4 (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘𝐴𝑘 ∈ {𝑀}))
9 gsumunsnd.f . . . . 5 ((𝜑𝑘𝐴) → 𝑋𝐵)
10 elsni 4578 . . . . . . 7 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
11 gsumunsnd.s . . . . . . 7 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
1210, 11sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑋 = 𝑌)
13 gsumunsnd.y . . . . . . 7 (𝜑𝑌𝐵)
1413adantr 483 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑌𝐵)
1512, 14eqeltrd 2913 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝑋𝐵)
169, 15jaodan 954 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘 ∈ {𝑀})) → 𝑋𝐵)
178, 16sylan2b 595 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
18 gsumunsnd.d . . . 4 (𝜑 → ¬ 𝑀𝐴)
19 disjsn 4641 . . . 4 ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀𝐴)
2018, 19sylibr 236 . . 3 (𝜑 → (𝐴 ∩ {𝑀}) = ∅)
21 eqidd 2822 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀}))
221, 2, 3, 7, 17, 20, 21gsummptfidmsplit 19044 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
23 cmnmnd 18916 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
243, 23syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
25 gsumunsnd.m . . . 4 (𝜑𝑀𝑉)
26 nfv 1911 . . . 4 𝑘𝜑
27 gsumunsnfd.0 . . . 4 𝑘𝑌
281, 24, 25, 13, 11, 26, 27gsumsnfd 19065 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2928oveq2d 7166 . 2 (𝜑 → ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
3022, 29eqtrd 2856 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wnfc 2961  cun 3934  cin 3935  c0 4291  {csn 4561  cmpt 5139  cfv 6350  (class class class)co 7150  Fincfn 8503  Basecbs 16477  +gcplusg 16559   Σg cgsu 16708  Mndcmnd 17905  CMndccmn 18900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902
This theorem is referenced by:  gsumunsnd  19072  gsumunsnf  19073
  Copyright terms: Public domain W3C validator