MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumunsnfd Structured version   Visualization version   GIF version

Theorem gsumunsnfd 19975
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumunsnd.b 𝐵 = (Base‘𝐺)
gsumunsnd.p + = (+g𝐺)
gsumunsnd.g (𝜑𝐺 ∈ CMnd)
gsumunsnd.a (𝜑𝐴 ∈ Fin)
gsumunsnd.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumunsnd.m (𝜑𝑀𝑉)
gsumunsnd.d (𝜑 → ¬ 𝑀𝐴)
gsumunsnd.y (𝜑𝑌𝐵)
gsumunsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
gsumunsnfd.0 𝑘𝑌
Assertion
Ref Expression
gsumunsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumunsnfd
StepHypRef Expression
1 gsumunsnd.b . . 3 𝐵 = (Base‘𝐺)
2 gsumunsnd.p . . 3 + = (+g𝐺)
3 gsumunsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumunsnd.a . . . 4 (𝜑𝐴 ∈ Fin)
5 snfi 9083 . . . 4 {𝑀} ∈ Fin
6 unfi 9211 . . . 4 ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin)
74, 5, 6sylancl 586 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin)
8 elun 4153 . . . 4 (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘𝐴𝑘 ∈ {𝑀}))
9 gsumunsnd.f . . . . 5 ((𝜑𝑘𝐴) → 𝑋𝐵)
10 elsni 4643 . . . . . . 7 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
11 gsumunsnd.s . . . . . . 7 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
1210, 11sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑋 = 𝑌)
13 gsumunsnd.y . . . . . . 7 (𝜑𝑌𝐵)
1413adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑌𝐵)
1512, 14eqeltrd 2841 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝑋𝐵)
169, 15jaodan 960 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘 ∈ {𝑀})) → 𝑋𝐵)
178, 16sylan2b 594 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
18 gsumunsnd.d . . . 4 (𝜑 → ¬ 𝑀𝐴)
19 disjsn 4711 . . . 4 ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀𝐴)
2018, 19sylibr 234 . . 3 (𝜑 → (𝐴 ∩ {𝑀}) = ∅)
21 eqidd 2738 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀}))
221, 2, 3, 7, 17, 20, 21gsummptfidmsplit 19948 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
23 cmnmnd 19815 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
243, 23syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
25 gsumunsnd.m . . . 4 (𝜑𝑀𝑉)
26 nfv 1914 . . . 4 𝑘𝜑
27 gsumunsnfd.0 . . . 4 𝑘𝑌
281, 24, 25, 13, 11, 26, 27gsumsnfd 19969 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2928oveq2d 7447 . 2 (𝜑 → ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
3022, 29eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wnfc 2890  cun 3949  cin 3950  c0 4333  {csn 4626  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  Basecbs 17247  +gcplusg 17297   Σg cgsu 17485  Mndcmnd 18747  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800
This theorem is referenced by:  gsumunsnd  19976  gsumunsnf  19977
  Copyright terms: Public domain W3C validator