![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumunsnfd | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumunsnd.p | ⊢ + = (+g‘𝐺) |
gsumunsnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumunsnd.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
gsumunsnfd.0 | ⊢ Ⅎ𝑘𝑌 |
Ref | Expression |
---|---|
gsumunsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | snfi 9046 | . . . 4 ⊢ {𝑀} ∈ Fin | |
6 | unfi 9174 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
7 | 4, 5, 6 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
8 | elun 4143 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
9 | gsumunsnd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
10 | elsni 4640 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
11 | gsumunsnd.s | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
12 | 10, 11 | sylan2 592 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
13 | gsumunsnd.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
15 | 12, 14 | eqeltrd 2827 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
16 | 9, 15 | jaodan 954 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
17 | 8, 16 | sylan2b 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
18 | gsumunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
19 | disjsn 4710 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
20 | 18, 19 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
21 | eqidd 2727 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
22 | 1, 2, 3, 7, 17, 20, 21 | gsummptfidmsplit 19850 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
23 | cmnmnd 19717 | . . . . 5 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
25 | gsumunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
26 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
27 | gsumunsnfd.0 | . . . 4 ⊢ Ⅎ𝑘𝑌 | |
28 | 1, 24, 25, 13, 11, 26, 27 | gsumsnfd 19871 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
29 | 28 | oveq2d 7421 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
30 | 22, 29 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2877 ∪ cun 3941 ∩ cin 3942 ∅c0 4317 {csn 4623 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 Fincfn 8941 Basecbs 17153 +gcplusg 17206 Σg cgsu 17395 Mndcmnd 18667 CMndccmn 19700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-0g 17396 df-gsum 17397 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-mulg 18996 df-cntz 19233 df-cmn 19702 |
This theorem is referenced by: gsumunsnd 19878 gsumunsnf 19879 |
Copyright terms: Public domain | W3C validator |