MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumunsnfd Structured version   Visualization version   GIF version

Theorem gsumunsnfd 19916
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumunsnd.b 𝐵 = (Base‘𝐺)
gsumunsnd.p + = (+g𝐺)
gsumunsnd.g (𝜑𝐺 ∈ CMnd)
gsumunsnd.a (𝜑𝐴 ∈ Fin)
gsumunsnd.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumunsnd.m (𝜑𝑀𝑉)
gsumunsnd.d (𝜑 → ¬ 𝑀𝐴)
gsumunsnd.y (𝜑𝑌𝐵)
gsumunsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
gsumunsnfd.0 𝑘𝑌
Assertion
Ref Expression
gsumunsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumunsnfd
StepHypRef Expression
1 gsumunsnd.b . . 3 𝐵 = (Base‘𝐺)
2 gsumunsnd.p . . 3 + = (+g𝐺)
3 gsumunsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumunsnd.a . . . 4 (𝜑𝐴 ∈ Fin)
5 snfi 9067 . . . 4 {𝑀} ∈ Fin
6 unfi 9195 . . . 4 ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin)
74, 5, 6sylancl 584 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin)
8 elun 4141 . . . 4 (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘𝐴𝑘 ∈ {𝑀}))
9 gsumunsnd.f . . . . 5 ((𝜑𝑘𝐴) → 𝑋𝐵)
10 elsni 4641 . . . . . . 7 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
11 gsumunsnd.s . . . . . . 7 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
1210, 11sylan2 591 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑋 = 𝑌)
13 gsumunsnd.y . . . . . . 7 (𝜑𝑌𝐵)
1413adantr 479 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑌𝐵)
1512, 14eqeltrd 2825 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝑋𝐵)
169, 15jaodan 955 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘 ∈ {𝑀})) → 𝑋𝐵)
178, 16sylan2b 592 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
18 gsumunsnd.d . . . 4 (𝜑 → ¬ 𝑀𝐴)
19 disjsn 4711 . . . 4 ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀𝐴)
2018, 19sylibr 233 . . 3 (𝜑 → (𝐴 ∩ {𝑀}) = ∅)
21 eqidd 2726 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀}))
221, 2, 3, 7, 17, 20, 21gsummptfidmsplit 19889 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
23 cmnmnd 19756 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
243, 23syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
25 gsumunsnd.m . . . 4 (𝜑𝑀𝑉)
26 nfv 1909 . . . 4 𝑘𝜑
27 gsumunsnfd.0 . . . 4 𝑘𝑌
281, 24, 25, 13, 11, 26, 27gsumsnfd 19910 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2928oveq2d 7432 . 2 (𝜑 → ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
3022, 29eqtrd 2765 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wnfc 2875  cun 3937  cin 3938  c0 4318  {csn 4624  cmpt 5226  cfv 6543  (class class class)co 7416  Fincfn 8962  Basecbs 17179  +gcplusg 17232   Σg cgsu 17421  Mndcmnd 18693  CMndccmn 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-0g 17422  df-gsum 17423  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19028  df-cntz 19272  df-cmn 19741
This theorem is referenced by:  gsumunsnd  19917  gsumunsnf  19918
  Copyright terms: Public domain W3C validator