Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsms0 | Structured version Visualization version GIF version |
Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsms0.z | ⊢ 0 = (0g‘𝐺) |
tsms0.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsms0.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsms0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
tsms0 | ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsms0.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19317 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
4 | tsms0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | tsms0.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | gsumz 18389 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
7 | 3, 4, 6 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
8 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
9 | tsms0.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
10 | 8, 5 | mndidcl 18315 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ (Base‘𝐺)) |
13 | 12 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ):𝐴⟶(Base‘𝐺)) |
14 | fconstmpt 5640 | . . . 4 ⊢ (𝐴 × { 0 }) = (𝑥 ∈ 𝐴 ↦ 0 ) | |
15 | 5 | fvexi 6770 | . . . . . 6 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
17 | 4, 16 | fczfsuppd 9076 | . . . 4 ⊢ (𝜑 → (𝐴 × { 0 }) finSupp 0 ) |
18 | 14, 17 | eqbrtrrid 5106 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ) finSupp 0 ) |
19 | 8, 5, 1, 9, 4, 13, 18 | tsmsid 23199 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
20 | 7, 19 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 Basecbs 16840 0gc0g 17067 Σg cgsu 17068 Mndcmnd 18300 CMndccmn 19301 TopSpctps 21989 tsums ctsu 23185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |