| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsms0 | Structured version Visualization version GIF version | ||
| Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
| Ref | Expression |
|---|---|
| tsms0.z | ⊢ 0 = (0g‘𝐺) |
| tsms0.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsms0.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| tsms0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| tsms0 | ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsms0.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19702 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 4 | tsms0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | tsms0.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 6 | 5 | gsumz 18736 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 7 | 3, 4, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 8 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 9 | tsms0.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 10 | 8, 5 | mndidcl 18649 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
| 11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ (Base‘𝐺)) |
| 13 | 12 | fmpttd 7043 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ):𝐴⟶(Base‘𝐺)) |
| 14 | fconstmpt 5676 | . . . 4 ⊢ (𝐴 × { 0 }) = (𝑥 ∈ 𝐴 ↦ 0 ) | |
| 15 | 5 | fvexi 6831 | . . . . . 6 ⊢ 0 ∈ V |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
| 17 | 4, 16 | fczfsuppd 9265 | . . . 4 ⊢ (𝜑 → (𝐴 × { 0 }) finSupp 0 ) |
| 18 | 14, 17 | eqbrtrrid 5125 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ) finSupp 0 ) |
| 19 | 8, 5, 1, 9, 4, 13, 18 | tsmsid 24048 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
| 20 | 7, 19 | eqeltrrd 2830 | 1 ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 ↦ cmpt 5170 × cxp 5612 ‘cfv 6477 (class class class)co 7341 finSupp cfsupp 9240 Basecbs 17112 0gc0g 17335 Σg cgsu 17336 Mndcmnd 18634 CMndccmn 19685 TopSpctps 22840 tsums ctsu 24034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-0g 17337 df-gsum 17338 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-cntz 19222 df-cmn 19687 df-fbas 21281 df-fg 21282 df-top 22802 df-topon 22819 df-topsp 22841 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-tsms 24035 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |