![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsms0 | Structured version Visualization version GIF version |
Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsms0.z | ⊢ 0 = (0g‘𝐺) |
tsms0.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsms0.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsms0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
tsms0 | ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsms0.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19659 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
4 | tsms0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | tsms0.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | gsumz 18713 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
7 | 3, 4, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
8 | eqid 2732 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
9 | tsms0.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
10 | 8, 5 | mndidcl 18636 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ (Base‘𝐺)) |
13 | 12 | fmpttd 7111 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ):𝐴⟶(Base‘𝐺)) |
14 | fconstmpt 5736 | . . . 4 ⊢ (𝐴 × { 0 }) = (𝑥 ∈ 𝐴 ↦ 0 ) | |
15 | 5 | fvexi 6902 | . . . . . 6 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
17 | 4, 16 | fczfsuppd 9377 | . . . 4 ⊢ (𝜑 → (𝐴 × { 0 }) finSupp 0 ) |
18 | 14, 17 | eqbrtrrid 5183 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ) finSupp 0 ) |
19 | 8, 5, 1, 9, 4, 13, 18 | tsmsid 23635 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
20 | 7, 19 | eqeltrrd 2834 | 1 ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ↦ cmpt 5230 × cxp 5673 ‘cfv 6540 (class class class)co 7405 finSupp cfsupp 9357 Basecbs 17140 0gc0g 17381 Σg cgsu 17382 Mndcmnd 18621 CMndccmn 19642 TopSpctps 22425 tsums ctsu 23621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-0g 17383 df-gsum 17384 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-cntz 19175 df-cmn 19644 df-fbas 20933 df-fg 20934 df-top 22387 df-topon 22404 df-topsp 22426 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-tsms 23622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |