Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsms0 | Structured version Visualization version GIF version |
Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsms0.z | ⊢ 0 = (0g‘𝐺) |
tsms0.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsms0.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsms0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
tsms0 | ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsms0.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19474 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
4 | tsms0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | tsms0.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | gsumz 18548 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
7 | 3, 4, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
8 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
9 | tsms0.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
10 | 8, 5 | mndidcl 18474 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ (Base‘𝐺)) |
13 | 12 | fmpttd 7028 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ):𝐴⟶(Base‘𝐺)) |
14 | fconstmpt 5667 | . . . 4 ⊢ (𝐴 × { 0 }) = (𝑥 ∈ 𝐴 ↦ 0 ) | |
15 | 5 | fvexi 6825 | . . . . . 6 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
17 | 4, 16 | fczfsuppd 9222 | . . . 4 ⊢ (𝜑 → (𝐴 × { 0 }) finSupp 0 ) |
18 | 14, 17 | eqbrtrrid 5122 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ) finSupp 0 ) |
19 | 8, 5, 1, 9, 4, 13, 18 | tsmsid 23371 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
20 | 7, 19 | eqeltrrd 2838 | 1 ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3440 {csn 4570 ↦ cmpt 5169 × cxp 5605 ‘cfv 6465 (class class class)co 7316 finSupp cfsupp 9204 Basecbs 16986 0gc0g 17224 Σg cgsu 17225 Mndcmnd 18459 CMndccmn 19458 TopSpctps 22161 tsums ctsu 23357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-0g 17226 df-gsum 17227 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-cntz 18996 df-cmn 19460 df-fbas 20674 df-fg 20675 df-top 22123 df-topon 22140 df-topsp 22162 df-cld 22250 df-ntr 22251 df-cls 22252 df-nei 22329 df-fil 23077 df-fm 23169 df-flim 23170 df-flf 23171 df-tsms 23358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |