Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsms0 | Structured version Visualization version GIF version |
Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsms0.z | ⊢ 0 = (0g‘𝐺) |
tsms0.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsms0.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsms0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
tsms0 | ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsms0.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19402 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
4 | tsms0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | tsms0.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | gsumz 18474 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
7 | 3, 4, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
8 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
9 | tsms0.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
10 | 8, 5 | mndidcl 18400 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ (Base‘𝐺)) |
13 | 12 | fmpttd 6989 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ):𝐴⟶(Base‘𝐺)) |
14 | fconstmpt 5649 | . . . 4 ⊢ (𝐴 × { 0 }) = (𝑥 ∈ 𝐴 ↦ 0 ) | |
15 | 5 | fvexi 6788 | . . . . . 6 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
17 | 4, 16 | fczfsuppd 9146 | . . . 4 ⊢ (𝜑 → (𝐴 × { 0 }) finSupp 0 ) |
18 | 14, 17 | eqbrtrrid 5110 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0 ) finSupp 0 ) |
19 | 8, 5, 1, 9, 4, 13, 18 | tsmsid 23291 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
20 | 7, 19 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 finSupp cfsupp 9128 Basecbs 16912 0gc0g 17150 Σg cgsu 17151 Mndcmnd 18385 CMndccmn 19386 TopSpctps 22081 tsums ctsu 23277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-cntz 18923 df-cmn 19388 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-topsp 22082 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-tsms 23278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |