MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmulasscom Structured version   Visualization version   GIF version

Theorem divmulasscom 11797
Description: An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021.)
Assertion
Ref Expression
divmulasscom (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))

Proof of Theorem divmulasscom
StepHypRef Expression
1 divmulass 11796 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷)))
2 mulcom 11089 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
323adant3 1132 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
43adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
54oveq1d 7361 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · 𝐵) · (𝐶 / 𝐷)) = ((𝐵 · 𝐴) · (𝐶 / 𝐷)))
6 simpl2 1193 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → 𝐵 ∈ ℂ)
7 simpl1 1192 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → 𝐴 ∈ ℂ)
8 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
98anim1i 615 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)))
10 3anass 1094 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)))
119, 10sylibr 234 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
12 divcl 11779 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐶 / 𝐷) ∈ ℂ)
1311, 12syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 / 𝐷) ∈ ℂ)
146, 7, 13mulassd 11132 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐵 · 𝐴) · (𝐶 / 𝐷)) = (𝐵 · (𝐴 · (𝐶 / 𝐷))))
158adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → 𝐶 ∈ ℂ)
16 simpr 484 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
17 divass 11791 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · 𝐶) / 𝐷) = (𝐴 · (𝐶 / 𝐷)))
187, 15, 16, 17syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · 𝐶) / 𝐷) = (𝐴 · (𝐶 / 𝐷)))
1918eqcomd 2737 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐴 · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / 𝐷))
2019oveq2d 7362 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐵 · (𝐴 · (𝐶 / 𝐷))) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
2114, 20eqtrd 2766 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐵 · 𝐴) · (𝐶 / 𝐷)) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
221, 5, 213eqtrd 2770 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11001  0cc0 11003   · cmul 11008   / cdiv 11771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772
This theorem is referenced by:  cncongr2  16576
  Copyright terms: Public domain W3C validator