Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cjcn2 | Structured version Visualization version GIF version |
Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
cjcn2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjf 14860 | . 2 ⊢ ∗:ℂ⟶ℂ | |
2 | cjcl 14861 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ) | |
3 | cjcl 14861 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | subcl 11266 | . . . . 5 ⊢ (((∗‘𝑧) ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → ((∗‘𝑧) − (∗‘𝐴)) ∈ ℂ) | |
5 | 2, 3, 4 | syl2an 597 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((∗‘𝑧) − (∗‘𝐴)) ∈ ℂ) |
6 | 5 | abscld 15193 | . . 3 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((∗‘𝑧) − (∗‘𝐴))) ∈ ℝ) |
7 | cjsub 14905 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(𝑧 − 𝐴)) = ((∗‘𝑧) − (∗‘𝐴))) | |
8 | 7 | fveq2d 6808 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(∗‘(𝑧 − 𝐴))) = (abs‘((∗‘𝑧) − (∗‘𝐴)))) |
9 | subcl 11266 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) | |
10 | 9 | abscjd 15207 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(∗‘(𝑧 − 𝐴))) = (abs‘(𝑧 − 𝐴))) |
11 | 8, 10 | eqtr3d 2778 | . . 3 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((∗‘𝑧) − (∗‘𝐴))) = (abs‘(𝑧 − 𝐴))) |
12 | 6, 11 | eqled 11124 | . 2 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((∗‘𝑧) − (∗‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
13 | 1, 12 | cn1lem 15352 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 < clt 11055 − cmin 11251 ℝ+crp 12776 ∗ccj 14852 abscabs 14990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 |
This theorem is referenced by: climcj 15359 rlimcj 15364 cjcncf 24112 |
Copyright terms: Public domain | W3C validator |