Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fllog2 Structured version   Visualization version   GIF version

Theorem fllog2 47824
Description: The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
fllog2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)

Proof of Theorem fllog2
StepHypRef Expression
1 nn0z 12616 . . . 4 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
21adantr 479 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℤ)
3 2rp 13014 . . . . 5 2 ∈ ℝ+
4 elfzoelz 13667 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℤ)
54zred 12699 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℝ)
65adantl 480 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ)
7 elfzo2 13670 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) ↔ (𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))))
8 eluz2 12861 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(2↑𝐼)) ↔ ((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁))
9 2re 12319 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
10 2pos 12348 . . . . . . . . . . . . . . . . 17 0 < 2
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 0 < 2)
12 expgt0 14096 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2) → 0 < (2↑𝐼))
139, 1, 11, 12mp3an2i 1462 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → 0 < (2↑𝐼))
1413adantl 480 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
15 0red 11249 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
16 zre 12595 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (2↑𝐼) ∈ ℝ)
1716adantr 479 . . . . . . . . . . . . . . . 16 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2↑𝐼) ∈ ℝ)
1817adantr 479 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
19 zre 12595 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019ad2antlr 725 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
21 ltletr 11338 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (2↑𝐼) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2215, 18, 20, 21syl3anc 1368 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2314, 22mpand 693 . . . . . . . . . . . . 13 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
2423ex 411 . . . . . . . . . . . 12 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁)))
2524com23 86 . . . . . . . . . . 11 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁)))
26253impia 1114 . . . . . . . . . 10 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
278, 26sylbi 216 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
28273ad2ant1 1130 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
297, 28sylbi 216 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
3029impcom 406 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 0 < 𝑁)
316, 30elrpd 13048 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ+)
32 1ne2 12453 . . . . . . 7 1 ≠ 2
3332necomi 2984 . . . . . 6 2 ≠ 1
3433a1i 11 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ≠ 1)
35 relogbcl 26750 . . . . 5 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
363, 31, 34, 35mp3an2i 1462 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb 𝑁) ∈ ℝ)
3736flcld 13799 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
38 eluzelz 12865 . . . . . . . 8 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℤ)
39 zltlem1 12648 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
4038, 39sylan 578 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
41 2z 12627 . . . . . . . . . . . 12 2 ∈ ℤ
42 uzid 12870 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4341, 42ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
44 eluzelre 12866 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℝ)
4544adantr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
469a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ ℕ0 → 2 ∈ ℝ)
4746, 1, 113jca 1125 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
48473ad2ant3 1132 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
4948, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
50 0red 11249 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
51163ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
52193ad2ant2 1131 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
5350, 51, 52, 21syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
5449, 53mpand 693 . . . . . . . . . . . . . . . . . 18 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
55543exp 1116 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))))
5655com34 91 . . . . . . . . . . . . . . . 16 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁))))
57563imp 1108 . . . . . . . . . . . . . . 15 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
588, 57sylbi 216 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
5958imp 405 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
6045, 59elrpd 13048 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
6160adantlr 713 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
629a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℝ)
63 peano2nn0 12545 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
6463adantl 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
6562, 64reexpcld 14163 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
66 peano2rem 11559 . . . . . . . . . . . . 13 ((2↑(𝐼 + 1)) ∈ ℝ → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
68 nn0p1nn 12544 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ)
69 1lt2 12416 . . . . . . . . . . . . . . . . 17 1 < 2
7069a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 1 < 2)
7146, 68, 703jca 1125 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
7271adantl 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
73 expgt1 14101 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐼 + 1)))
7472, 73syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 < (2↑(𝐼 + 1)))
75 1red 11247 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 ∈ ℝ)
76 zre 12595 . . . . . . . . . . . . . . 15 ((2↑(𝐼 + 1)) ∈ ℤ → (2↑(𝐼 + 1)) ∈ ℝ)
7776ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
7875, 77posdifd 11833 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
7974, 78mpbid 231 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < ((2↑(𝐼 + 1)) − 1))
8067, 79elrpd 13048 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
81 logbleb 26760 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+ ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8243, 61, 80, 81mp3an2i 1462 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8344adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → 𝑁 ∈ ℝ)
8483adantr 479 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
8559adantlr 713 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
8684, 85elrpd 13048 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
8733a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ≠ 1)
883, 86, 87, 35mp3an2i 1462 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb 𝑁) ∈ ℝ)
8988adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ∈ ℝ)
9043a1i 11 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → 2 ∈ (ℤ‘2))
9146, 63reexpcld 14163 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (2↑(𝐼 + 1)) ∈ ℝ)
9291, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
939, 68, 70, 73mp3an2i 1462 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → 1 < (2↑(𝐼 + 1)))
94 1red 11247 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0 → 1 ∈ ℝ)
9594, 91posdifd 11833 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
9693, 95mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → 0 < ((2↑(𝐼 + 1)) − 1))
9792, 96elrpd 13048 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
9890, 97jca 510 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
9998adantl 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
100 relogbzcl 26751 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
10199, 100syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
102101adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
103 simpr 483 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)))
104 flwordi 13813 . . . . . . . . . . . . 13 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
10589, 102, 103, 104syl3anc 1368 . . . . . . . . . . . 12 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
106105ex 411 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1)))))
10768adantl 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ)
108 logbpw2m1 47823 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ ℕ → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
109107, 108syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
110 nn0cn 12515 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
111 pncan1 11670 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℂ → ((𝐼 + 1) − 1) = 𝐼)
112110, 111syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0 → ((𝐼 + 1) − 1) = 𝐼)
113112adantl 480 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1) − 1) = 𝐼)
114109, 113eqtrd 2765 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = 𝐼)
115114breq2d 5161 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) ↔ (⌊‘(2 logb 𝑁)) ≤ 𝐼))
116106, 115sylibd 238 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
11782, 116sylbid 239 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
118117ex 411 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝐼 ∈ ℕ0 → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
119118com23 86 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
12040, 119sylbid 239 . . . . . 6 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
1211203impia 1114 . . . . 5 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
1227, 121sylbi 216 . . . 4 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
123122impcom 406 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)
124 nn0re 12514 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
125 nn0ge0 12530 . . . . . . . 8 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
126 flge0nn0 13821 . . . . . . . 8 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
127124, 125, 126syl2anc 582 . . . . . . 7 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℕ0)
128127nn0red 12566 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℝ)
129128adantr 479 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ∈ ℝ)
130124adantr 479 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℝ)
131 flle 13800 . . . . . . 7 (𝐼 ∈ ℝ → (⌊‘𝐼) ≤ 𝐼)
132124, 131syl 17 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ≤ 𝐼)
133132adantr 479 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ 𝐼)
1343a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℝ+)
135134, 1rpexpcld 14245 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℝ+)
13633a1i 11 . . . . . . . 8 (𝐼 ∈ ℕ0 → 2 ≠ 1)
137 relogbcl 26750 . . . . . . . 8 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
1383, 135, 136, 137mp3an2i 1462 . . . . . . 7 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) ∈ ℝ)
139138adantr 479 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ∈ ℝ)
140 nnlogbexp 26758 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
14190, 1, 140syl2anc 582 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) = 𝐼)
142141eqcomd 2731 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 = (2 logb (2↑𝐼)))
143124, 142eqled 11349 . . . . . . 7 (𝐼 ∈ ℕ0𝐼 ≤ (2 logb (2↑𝐼)))
144143adantr 479 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb (2↑𝐼)))
145 elfzole1 13675 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (2↑𝐼) ≤ 𝑁)
146145adantl 480 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ≤ 𝑁)
147135adantr 479 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ∈ ℝ+)
148 logbleb 26760 . . . . . . . 8 ((2 ∈ (ℤ‘2) ∧ (2↑𝐼) ∈ ℝ+𝑁 ∈ ℝ+) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
14943, 147, 31, 148mp3an2i 1462 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
150146, 149mpbid 231 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ≤ (2 logb 𝑁))
151130, 139, 36, 144, 150letrd 11403 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb 𝑁))
152129, 130, 36, 133, 151letrd 11403 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ (2 logb 𝑁))
153 flflp1 13808 . . . . 5 ((𝐼 ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
154130, 36, 153syl2anc 582 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
155152, 154mpbid 231 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 < ((⌊‘(2 logb 𝑁)) + 1))
156 zgeltp1eq 46824 . . . 4 ((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) → (((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1)) → 𝐼 = (⌊‘(2 logb 𝑁))))
157156imp 405 . . 3 (((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) ∧ ((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1))) → 𝐼 = (⌊‘(2 logb 𝑁)))
1582, 37, 123, 155, 157syl22anc 837 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 = (⌊‘(2 logb 𝑁)))
159158eqcomd 2731 1 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476  cn 12245  2c2 12300  0cn0 12505  cz 12591  cuz 12855  +crp 13009  ..^cfzo 13662  cfl 13791  cexp 14062   logb clogb 26741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-log 26535  df-cxp 26536  df-logb 26742
This theorem is referenced by:  nnolog2flm1  47846
  Copyright terms: Public domain W3C validator