Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fllog2 Structured version   Visualization version   GIF version

Theorem fllog2 47208
Description: The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
fllog2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)

Proof of Theorem fllog2
StepHypRef Expression
1 nn0z 12580 . . . 4 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
21adantr 482 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℤ)
3 2rp 12976 . . . . 5 2 ∈ ℝ+
4 elfzoelz 13629 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℤ)
54zred 12663 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℝ)
65adantl 483 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ)
7 elfzo2 13632 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) ↔ (𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))))
8 eluz2 12825 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(2↑𝐼)) ↔ ((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁))
9 2re 12283 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
10 2pos 12312 . . . . . . . . . . . . . . . . 17 0 < 2
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 0 < 2)
12 expgt0 14058 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2) → 0 < (2↑𝐼))
139, 1, 11, 12mp3an2i 1467 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → 0 < (2↑𝐼))
1413adantl 483 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
15 0red 11214 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
16 zre 12559 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (2↑𝐼) ∈ ℝ)
1716adantr 482 . . . . . . . . . . . . . . . 16 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2↑𝐼) ∈ ℝ)
1817adantr 482 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
19 zre 12559 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019ad2antlr 726 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
21 ltletr 11303 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (2↑𝐼) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2215, 18, 20, 21syl3anc 1372 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2314, 22mpand 694 . . . . . . . . . . . . 13 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
2423ex 414 . . . . . . . . . . . 12 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁)))
2524com23 86 . . . . . . . . . . 11 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁)))
26253impia 1118 . . . . . . . . . 10 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
278, 26sylbi 216 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
28273ad2ant1 1134 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
297, 28sylbi 216 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
3029impcom 409 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 0 < 𝑁)
316, 30elrpd 13010 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ+)
32 1ne2 12417 . . . . . . 7 1 ≠ 2
3332necomi 2996 . . . . . 6 2 ≠ 1
3433a1i 11 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ≠ 1)
35 relogbcl 26268 . . . . 5 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
363, 31, 34, 35mp3an2i 1467 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb 𝑁) ∈ ℝ)
3736flcld 13760 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
38 eluzelz 12829 . . . . . . . 8 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℤ)
39 zltlem1 12612 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
4038, 39sylan 581 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
41 2z 12591 . . . . . . . . . . . 12 2 ∈ ℤ
42 uzid 12834 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4341, 42ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
44 eluzelre 12830 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℝ)
4544adantr 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
469a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ ℕ0 → 2 ∈ ℝ)
4746, 1, 113jca 1129 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
48473ad2ant3 1136 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
4948, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
50 0red 11214 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
51163ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
52193ad2ant2 1135 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
5350, 51, 52, 21syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
5449, 53mpand 694 . . . . . . . . . . . . . . . . . 18 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
55543exp 1120 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))))
5655com34 91 . . . . . . . . . . . . . . . 16 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁))))
57563imp 1112 . . . . . . . . . . . . . . 15 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
588, 57sylbi 216 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
5958imp 408 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
6045, 59elrpd 13010 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
6160adantlr 714 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
629a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℝ)
63 peano2nn0 12509 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
6463adantl 483 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
6562, 64reexpcld 14125 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
66 peano2rem 11524 . . . . . . . . . . . . 13 ((2↑(𝐼 + 1)) ∈ ℝ → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
68 nn0p1nn 12508 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ)
69 1lt2 12380 . . . . . . . . . . . . . . . . 17 1 < 2
7069a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 1 < 2)
7146, 68, 703jca 1129 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
7271adantl 483 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
73 expgt1 14063 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐼 + 1)))
7472, 73syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 < (2↑(𝐼 + 1)))
75 1red 11212 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 ∈ ℝ)
76 zre 12559 . . . . . . . . . . . . . . 15 ((2↑(𝐼 + 1)) ∈ ℤ → (2↑(𝐼 + 1)) ∈ ℝ)
7776ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
7875, 77posdifd 11798 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
7974, 78mpbid 231 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < ((2↑(𝐼 + 1)) − 1))
8067, 79elrpd 13010 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
81 logbleb 26278 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+ ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8243, 61, 80, 81mp3an2i 1467 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8344adantr 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → 𝑁 ∈ ℝ)
8483adantr 482 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
8559adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
8684, 85elrpd 13010 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
8733a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ≠ 1)
883, 86, 87, 35mp3an2i 1467 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb 𝑁) ∈ ℝ)
8988adantr 482 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ∈ ℝ)
9043a1i 11 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → 2 ∈ (ℤ‘2))
9146, 63reexpcld 14125 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (2↑(𝐼 + 1)) ∈ ℝ)
9291, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
939, 68, 70, 73mp3an2i 1467 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → 1 < (2↑(𝐼 + 1)))
94 1red 11212 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0 → 1 ∈ ℝ)
9594, 91posdifd 11798 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
9693, 95mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → 0 < ((2↑(𝐼 + 1)) − 1))
9792, 96elrpd 13010 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
9890, 97jca 513 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
9998adantl 483 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
100 relogbzcl 26269 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
10199, 100syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
102101adantr 482 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
103 simpr 486 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)))
104 flwordi 13774 . . . . . . . . . . . . 13 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
10589, 102, 103, 104syl3anc 1372 . . . . . . . . . . . 12 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
106105ex 414 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1)))))
10768adantl 483 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ)
108 logbpw2m1 47207 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ ℕ → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
109107, 108syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
110 nn0cn 12479 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
111 pncan1 11635 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℂ → ((𝐼 + 1) − 1) = 𝐼)
112110, 111syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0 → ((𝐼 + 1) − 1) = 𝐼)
113112adantl 483 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1) − 1) = 𝐼)
114109, 113eqtrd 2773 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = 𝐼)
115114breq2d 5160 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) ↔ (⌊‘(2 logb 𝑁)) ≤ 𝐼))
116106, 115sylibd 238 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
11782, 116sylbid 239 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
118117ex 414 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝐼 ∈ ℕ0 → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
119118com23 86 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
12040, 119sylbid 239 . . . . . 6 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
1211203impia 1118 . . . . 5 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
1227, 121sylbi 216 . . . 4 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
123122impcom 409 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)
124 nn0re 12478 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
125 nn0ge0 12494 . . . . . . . 8 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
126 flge0nn0 13782 . . . . . . . 8 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
127124, 125, 126syl2anc 585 . . . . . . 7 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℕ0)
128127nn0red 12530 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℝ)
129128adantr 482 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ∈ ℝ)
130124adantr 482 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℝ)
131 flle 13761 . . . . . . 7 (𝐼 ∈ ℝ → (⌊‘𝐼) ≤ 𝐼)
132124, 131syl 17 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ≤ 𝐼)
133132adantr 482 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ 𝐼)
1343a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℝ+)
135134, 1rpexpcld 14207 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℝ+)
13633a1i 11 . . . . . . . 8 (𝐼 ∈ ℕ0 → 2 ≠ 1)
137 relogbcl 26268 . . . . . . . 8 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
1383, 135, 136, 137mp3an2i 1467 . . . . . . 7 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) ∈ ℝ)
139138adantr 482 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ∈ ℝ)
140 nnlogbexp 26276 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
14190, 1, 140syl2anc 585 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) = 𝐼)
142141eqcomd 2739 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 = (2 logb (2↑𝐼)))
143124, 142eqled 11314 . . . . . . 7 (𝐼 ∈ ℕ0𝐼 ≤ (2 logb (2↑𝐼)))
144143adantr 482 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb (2↑𝐼)))
145 elfzole1 13637 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (2↑𝐼) ≤ 𝑁)
146145adantl 483 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ≤ 𝑁)
147135adantr 482 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ∈ ℝ+)
148 logbleb 26278 . . . . . . . 8 ((2 ∈ (ℤ‘2) ∧ (2↑𝐼) ∈ ℝ+𝑁 ∈ ℝ+) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
14943, 147, 31, 148mp3an2i 1467 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
150146, 149mpbid 231 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ≤ (2 logb 𝑁))
151130, 139, 36, 144, 150letrd 11368 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb 𝑁))
152129, 130, 36, 133, 151letrd 11368 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ (2 logb 𝑁))
153 flflp1 13769 . . . . 5 ((𝐼 ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
154130, 36, 153syl2anc 585 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
155152, 154mpbid 231 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 < ((⌊‘(2 logb 𝑁)) + 1))
156 zgeltp1eq 46004 . . . 4 ((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) → (((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1)) → 𝐼 = (⌊‘(2 logb 𝑁))))
157156imp 408 . . 3 (((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) ∧ ((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1))) → 𝐼 = (⌊‘(2 logb 𝑁)))
1582, 37, 123, 155, 157syl22anc 838 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 = (⌊‘(2 logb 𝑁)))
159158eqcomd 2739 1 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5148  cfv 6541  (class class class)co 7406  cc 11105  cr 11106  0cc0 11107  1c1 11108   + caddc 11110   < clt 11245  cle 11246  cmin 11441  cn 12209  2c2 12264  0cn0 12469  cz 12555  cuz 12819  +crp 12971  ..^cfzo 13624  cfl 13752  cexp 14024   logb clogb 26259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-hom 17218  df-cco 17219  df-rest 17365  df-topn 17366  df-0g 17384  df-gsum 17385  df-topgen 17386  df-pt 17387  df-prds 17390  df-xrs 17445  df-qtop 17450  df-imas 17451  df-xps 17453  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-mulg 18946  df-cntz 19176  df-cmn 19645  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-fbas 20934  df-fg 20935  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-perf 22633  df-cn 22723  df-cnp 22724  df-haus 22811  df-tx 23058  df-hmeo 23251  df-fil 23342  df-fm 23434  df-flim 23435  df-flf 23436  df-xms 23818  df-ms 23819  df-tms 23820  df-cncf 24386  df-limc 25375  df-dv 25376  df-log 26057  df-cxp 26058  df-logb 26260
This theorem is referenced by:  nnolog2flm1  47230
  Copyright terms: Public domain W3C validator