Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fllog2 Structured version   Visualization version   GIF version

Theorem fllog2 45914
Description: The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
fllog2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)

Proof of Theorem fllog2
StepHypRef Expression
1 nn0z 12343 . . . 4 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
21adantr 481 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℤ)
3 2rp 12735 . . . . 5 2 ∈ ℝ+
4 elfzoelz 13387 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℤ)
54zred 12426 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℝ)
65adantl 482 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ)
7 elfzo2 13390 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) ↔ (𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))))
8 eluz2 12588 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(2↑𝐼)) ↔ ((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁))
9 2re 12047 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
10 2pos 12076 . . . . . . . . . . . . . . . . 17 0 < 2
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 0 < 2)
12 expgt0 13816 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2) → 0 < (2↑𝐼))
139, 1, 11, 12mp3an2i 1465 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → 0 < (2↑𝐼))
1413adantl 482 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
15 0red 10978 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
16 zre 12323 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (2↑𝐼) ∈ ℝ)
1716adantr 481 . . . . . . . . . . . . . . . 16 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2↑𝐼) ∈ ℝ)
1817adantr 481 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
19 zre 12323 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019ad2antlr 724 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
21 ltletr 11067 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (2↑𝐼) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2215, 18, 20, 21syl3anc 1370 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2314, 22mpand 692 . . . . . . . . . . . . 13 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
2423ex 413 . . . . . . . . . . . 12 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁)))
2524com23 86 . . . . . . . . . . 11 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁)))
26253impia 1116 . . . . . . . . . 10 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
278, 26sylbi 216 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
28273ad2ant1 1132 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
297, 28sylbi 216 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
3029impcom 408 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 0 < 𝑁)
316, 30elrpd 12769 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ+)
32 1ne2 12181 . . . . . . 7 1 ≠ 2
3332necomi 2998 . . . . . 6 2 ≠ 1
3433a1i 11 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ≠ 1)
35 relogbcl 25923 . . . . 5 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
363, 31, 34, 35mp3an2i 1465 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb 𝑁) ∈ ℝ)
3736flcld 13518 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
38 eluzelz 12592 . . . . . . . 8 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℤ)
39 zltlem1 12373 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
4038, 39sylan 580 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
41 2z 12352 . . . . . . . . . . . 12 2 ∈ ℤ
42 uzid 12597 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4341, 42ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
44 eluzelre 12593 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℝ)
4544adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
469a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ ℕ0 → 2 ∈ ℝ)
4746, 1, 113jca 1127 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
48473ad2ant3 1134 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
4948, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
50 0red 10978 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
51163ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
52193ad2ant2 1133 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
5350, 51, 52, 21syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
5449, 53mpand 692 . . . . . . . . . . . . . . . . . 18 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
55543exp 1118 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))))
5655com34 91 . . . . . . . . . . . . . . . 16 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁))))
57563imp 1110 . . . . . . . . . . . . . . 15 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
588, 57sylbi 216 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
5958imp 407 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
6045, 59elrpd 12769 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
6160adantlr 712 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
629a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℝ)
63 peano2nn0 12273 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
6463adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
6562, 64reexpcld 13881 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
66 peano2rem 11288 . . . . . . . . . . . . 13 ((2↑(𝐼 + 1)) ∈ ℝ → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
68 nn0p1nn 12272 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ)
69 1lt2 12144 . . . . . . . . . . . . . . . . 17 1 < 2
7069a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 1 < 2)
7146, 68, 703jca 1127 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
7271adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
73 expgt1 13821 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐼 + 1)))
7472, 73syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 < (2↑(𝐼 + 1)))
75 1red 10976 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 ∈ ℝ)
76 zre 12323 . . . . . . . . . . . . . . 15 ((2↑(𝐼 + 1)) ∈ ℤ → (2↑(𝐼 + 1)) ∈ ℝ)
7776ad2antlr 724 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
7875, 77posdifd 11562 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
7974, 78mpbid 231 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < ((2↑(𝐼 + 1)) − 1))
8067, 79elrpd 12769 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
81 logbleb 25933 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+ ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8243, 61, 80, 81mp3an2i 1465 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8344adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → 𝑁 ∈ ℝ)
8483adantr 481 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
8559adantlr 712 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
8684, 85elrpd 12769 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
8733a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ≠ 1)
883, 86, 87, 35mp3an2i 1465 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb 𝑁) ∈ ℝ)
8988adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ∈ ℝ)
9043a1i 11 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → 2 ∈ (ℤ‘2))
9146, 63reexpcld 13881 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (2↑(𝐼 + 1)) ∈ ℝ)
9291, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
939, 68, 70, 73mp3an2i 1465 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → 1 < (2↑(𝐼 + 1)))
94 1red 10976 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0 → 1 ∈ ℝ)
9594, 91posdifd 11562 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
9693, 95mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → 0 < ((2↑(𝐼 + 1)) − 1))
9792, 96elrpd 12769 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
9890, 97jca 512 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
9998adantl 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
100 relogbzcl 25924 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
10199, 100syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
102101adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
103 simpr 485 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)))
104 flwordi 13532 . . . . . . . . . . . . 13 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
10589, 102, 103, 104syl3anc 1370 . . . . . . . . . . . 12 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
106105ex 413 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1)))))
10768adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ)
108 logbpw2m1 45913 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ ℕ → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
109107, 108syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
110 nn0cn 12243 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
111 pncan1 11399 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℂ → ((𝐼 + 1) − 1) = 𝐼)
112110, 111syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0 → ((𝐼 + 1) − 1) = 𝐼)
113112adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1) − 1) = 𝐼)
114109, 113eqtrd 2778 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = 𝐼)
115114breq2d 5086 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) ↔ (⌊‘(2 logb 𝑁)) ≤ 𝐼))
116106, 115sylibd 238 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
11782, 116sylbid 239 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
118117ex 413 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝐼 ∈ ℕ0 → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
119118com23 86 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
12040, 119sylbid 239 . . . . . 6 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
1211203impia 1116 . . . . 5 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
1227, 121sylbi 216 . . . 4 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
123122impcom 408 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)
124 nn0re 12242 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
125 nn0ge0 12258 . . . . . . . 8 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
126 flge0nn0 13540 . . . . . . . 8 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
127124, 125, 126syl2anc 584 . . . . . . 7 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℕ0)
128127nn0red 12294 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℝ)
129128adantr 481 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ∈ ℝ)
130124adantr 481 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℝ)
131 flle 13519 . . . . . . 7 (𝐼 ∈ ℝ → (⌊‘𝐼) ≤ 𝐼)
132124, 131syl 17 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ≤ 𝐼)
133132adantr 481 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ 𝐼)
1343a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℝ+)
135134, 1rpexpcld 13962 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℝ+)
13633a1i 11 . . . . . . . 8 (𝐼 ∈ ℕ0 → 2 ≠ 1)
137 relogbcl 25923 . . . . . . . 8 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
1383, 135, 136, 137mp3an2i 1465 . . . . . . 7 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) ∈ ℝ)
139138adantr 481 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ∈ ℝ)
140 nnlogbexp 25931 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
14190, 1, 140syl2anc 584 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) = 𝐼)
142141eqcomd 2744 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 = (2 logb (2↑𝐼)))
143124, 142eqled 11078 . . . . . . 7 (𝐼 ∈ ℕ0𝐼 ≤ (2 logb (2↑𝐼)))
144143adantr 481 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb (2↑𝐼)))
145 elfzole1 13395 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (2↑𝐼) ≤ 𝑁)
146145adantl 482 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ≤ 𝑁)
147135adantr 481 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ∈ ℝ+)
148 logbleb 25933 . . . . . . . 8 ((2 ∈ (ℤ‘2) ∧ (2↑𝐼) ∈ ℝ+𝑁 ∈ ℝ+) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
14943, 147, 31, 148mp3an2i 1465 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
150146, 149mpbid 231 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ≤ (2 logb 𝑁))
151130, 139, 36, 144, 150letrd 11132 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb 𝑁))
152129, 130, 36, 133, 151letrd 11132 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ (2 logb 𝑁))
153 flflp1 13527 . . . . 5 ((𝐼 ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
154130, 36, 153syl2anc 584 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
155152, 154mpbid 231 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 < ((⌊‘(2 logb 𝑁)) + 1))
156 zgeltp1eq 44801 . . . 4 ((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) → (((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1)) → 𝐼 = (⌊‘(2 logb 𝑁))))
157156imp 407 . . 3 (((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) ∧ ((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1))) → 𝐼 = (⌊‘(2 logb 𝑁)))
1582, 37, 123, 155, 157syl22anc 836 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 = (⌊‘(2 logb 𝑁)))
159158eqcomd 2744 1 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ..^cfzo 13382  cfl 13510  cexp 13782   logb clogb 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-logb 25915
This theorem is referenced by:  nnolog2flm1  45936
  Copyright terms: Public domain W3C validator