Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fllog2 Structured version   Visualization version   GIF version

Theorem fllog2 44635
Description: The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
fllog2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)

Proof of Theorem fllog2
StepHypRef Expression
1 nn0z 12008 . . . 4 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
21adantr 483 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℤ)
3 2rp 12397 . . . . 5 2 ∈ ℝ+
4 elfzoelz 13041 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℤ)
54zred 12090 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℝ)
65adantl 484 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ)
7 elfzo2 13044 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) ↔ (𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))))
8 eluz2 12252 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(2↑𝐼)) ↔ ((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁))
9 2re 11714 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
10 2pos 11743 . . . . . . . . . . . . . . . . 17 0 < 2
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 0 < 2)
12 expgt0 13465 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2) → 0 < (2↑𝐼))
139, 1, 11, 12mp3an2i 1462 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → 0 < (2↑𝐼))
1413adantl 484 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
15 0red 10646 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
16 zre 11988 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (2↑𝐼) ∈ ℝ)
1716adantr 483 . . . . . . . . . . . . . . . 16 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2↑𝐼) ∈ ℝ)
1817adantr 483 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
19 zre 11988 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019ad2antlr 725 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
21 ltletr 10734 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (2↑𝐼) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2215, 18, 20, 21syl3anc 1367 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2314, 22mpand 693 . . . . . . . . . . . . 13 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
2423ex 415 . . . . . . . . . . . 12 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁)))
2524com23 86 . . . . . . . . . . 11 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁)))
26253impia 1113 . . . . . . . . . 10 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
278, 26sylbi 219 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
28273ad2ant1 1129 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
297, 28sylbi 219 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
3029impcom 410 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 0 < 𝑁)
316, 30elrpd 12431 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ+)
32 1ne2 11848 . . . . . . 7 1 ≠ 2
3332necomi 3072 . . . . . 6 2 ≠ 1
3433a1i 11 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ≠ 1)
35 relogbcl 25353 . . . . 5 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
363, 31, 34, 35mp3an2i 1462 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb 𝑁) ∈ ℝ)
3736flcld 13171 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
38 eluzelz 12256 . . . . . . . 8 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℤ)
39 zltlem1 12038 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
4038, 39sylan 582 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
41 2z 12017 . . . . . . . . . . . 12 2 ∈ ℤ
42 uzid 12261 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4341, 42ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
44 eluzelre 12257 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℝ)
4544adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
469a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ ℕ0 → 2 ∈ ℝ)
4746, 1, 113jca 1124 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
48473ad2ant3 1131 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
4948, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
50 0red 10646 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
51163ad2ant1 1129 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
52193ad2ant2 1130 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
5350, 51, 52, 21syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
5449, 53mpand 693 . . . . . . . . . . . . . . . . . 18 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
55543exp 1115 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))))
5655com34 91 . . . . . . . . . . . . . . . 16 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁))))
57563imp 1107 . . . . . . . . . . . . . . 15 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
588, 57sylbi 219 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
5958imp 409 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
6045, 59elrpd 12431 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
6160adantlr 713 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
629a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℝ)
63 peano2nn0 11940 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
6463adantl 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
6562, 64reexpcld 13530 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
66 peano2rem 10955 . . . . . . . . . . . . 13 ((2↑(𝐼 + 1)) ∈ ℝ → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
68 nn0p1nn 11939 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ)
69 1lt2 11811 . . . . . . . . . . . . . . . . 17 1 < 2
7069a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 1 < 2)
7146, 68, 703jca 1124 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
7271adantl 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
73 expgt1 13470 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐼 + 1)))
7472, 73syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 < (2↑(𝐼 + 1)))
75 1red 10644 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 ∈ ℝ)
76 zre 11988 . . . . . . . . . . . . . . 15 ((2↑(𝐼 + 1)) ∈ ℤ → (2↑(𝐼 + 1)) ∈ ℝ)
7776ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
7875, 77posdifd 11229 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
7974, 78mpbid 234 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < ((2↑(𝐼 + 1)) − 1))
8067, 79elrpd 12431 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
81 logbleb 25363 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+ ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8243, 61, 80, 81mp3an2i 1462 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8344adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → 𝑁 ∈ ℝ)
8483adantr 483 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
8559adantlr 713 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
8684, 85elrpd 12431 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
8733a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ≠ 1)
883, 86, 87, 35mp3an2i 1462 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb 𝑁) ∈ ℝ)
8988adantr 483 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ∈ ℝ)
9043a1i 11 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → 2 ∈ (ℤ‘2))
9146, 63reexpcld 13530 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (2↑(𝐼 + 1)) ∈ ℝ)
9291, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
939, 68, 70, 73mp3an2i 1462 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → 1 < (2↑(𝐼 + 1)))
94 1red 10644 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0 → 1 ∈ ℝ)
9594, 91posdifd 11229 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
9693, 95mpbid 234 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → 0 < ((2↑(𝐼 + 1)) − 1))
9792, 96elrpd 12431 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
9890, 97jca 514 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
9998adantl 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
100 relogbzcl 25354 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
10199, 100syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
102101adantr 483 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
103 simpr 487 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)))
104 flwordi 13185 . . . . . . . . . . . . 13 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
10589, 102, 103, 104syl3anc 1367 . . . . . . . . . . . 12 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
106105ex 415 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1)))))
10768adantl 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ)
108 logbpw2m1 44634 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ ℕ → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
109107, 108syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
110 nn0cn 11910 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
111 pncan1 11066 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℂ → ((𝐼 + 1) − 1) = 𝐼)
112110, 111syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0 → ((𝐼 + 1) − 1) = 𝐼)
113112adantl 484 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1) − 1) = 𝐼)
114109, 113eqtrd 2858 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = 𝐼)
115114breq2d 5080 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) ↔ (⌊‘(2 logb 𝑁)) ≤ 𝐼))
116106, 115sylibd 241 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
11782, 116sylbid 242 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
118117ex 415 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝐼 ∈ ℕ0 → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
119118com23 86 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
12040, 119sylbid 242 . . . . . 6 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
1211203impia 1113 . . . . 5 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
1227, 121sylbi 219 . . . 4 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
123122impcom 410 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)
124 nn0re 11909 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
125 nn0ge0 11925 . . . . . . . 8 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
126 flge0nn0 13193 . . . . . . . 8 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
127124, 125, 126syl2anc 586 . . . . . . 7 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℕ0)
128127nn0red 11959 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℝ)
129128adantr 483 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ∈ ℝ)
130124adantr 483 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℝ)
131 flle 13172 . . . . . . 7 (𝐼 ∈ ℝ → (⌊‘𝐼) ≤ 𝐼)
132124, 131syl 17 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ≤ 𝐼)
133132adantr 483 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ 𝐼)
1343a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℝ+)
135134, 1rpexpcld 13611 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℝ+)
13633a1i 11 . . . . . . . 8 (𝐼 ∈ ℕ0 → 2 ≠ 1)
137 relogbcl 25353 . . . . . . . 8 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
1383, 135, 136, 137mp3an2i 1462 . . . . . . 7 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) ∈ ℝ)
139138adantr 483 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ∈ ℝ)
140 nnlogbexp 25361 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
14190, 1, 140syl2anc 586 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) = 𝐼)
142141eqcomd 2829 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 = (2 logb (2↑𝐼)))
143124, 142eqled 10745 . . . . . . 7 (𝐼 ∈ ℕ0𝐼 ≤ (2 logb (2↑𝐼)))
144143adantr 483 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb (2↑𝐼)))
145 elfzole1 13049 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (2↑𝐼) ≤ 𝑁)
146145adantl 484 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ≤ 𝑁)
147135adantr 483 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ∈ ℝ+)
148 logbleb 25363 . . . . . . . 8 ((2 ∈ (ℤ‘2) ∧ (2↑𝐼) ∈ ℝ+𝑁 ∈ ℝ+) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
14943, 147, 31, 148mp3an2i 1462 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
150146, 149mpbid 234 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ≤ (2 logb 𝑁))
151130, 139, 36, 144, 150letrd 10799 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb 𝑁))
152129, 130, 36, 133, 151letrd 10799 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ (2 logb 𝑁))
153 flflp1 13180 . . . . 5 ((𝐼 ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
154130, 36, 153syl2anc 586 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
155152, 154mpbid 234 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 < ((⌊‘(2 logb 𝑁)) + 1))
156 zgeltp1eq 43516 . . . 4 ((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) → (((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1)) → 𝐼 = (⌊‘(2 logb 𝑁))))
157156imp 409 . . 3 (((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) ∧ ((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1))) → 𝐼 = (⌊‘(2 logb 𝑁)))
1582, 37, 123, 155, 157syl22anc 836 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 = (⌊‘(2 logb 𝑁)))
159158eqcomd 2829 1 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ..^cfzo 13036  cfl 13163  cexp 13432   logb clogb 25344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-logb 25345
This theorem is referenced by:  nnolog2flm1  44657
  Copyright terms: Public domain W3C validator